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Abstract

Balancing exploration and exploitation during reinforcement learning fine-tuning of
generative models presents a critical challenge, as existing approaches rely on fixed
divergence regularization that creates an inherent dilemma: strong regularization
preserves model capabilities but limits reward optimization, while weak regulariza-
tion enables greater alignment but risks instability or reward hacking. We introduce
Adaptive Divergence Regularized Policy Optimization (ADRPO), which auto-
matically adjusts regularization strength based on advantage estimates—reducing
regularization for high-value samples while applying stronger regularization to
poor samples, enabling policies to navigate between exploration and aggressive
exploitation according to data quality. Our implementation with Wasserstein-2
regularization for flow matching generative models achieves remarkable results on
text-to-image generation, achieving better semantics alignment and diversity than
offline methods like DPO and online methods with fixed regularization like ORW-
CFM-W2. ADRPO also enables 2B parameter SD3 model to surpass much larger
models with 4.8B and 12B parameters in attribute binding, semantic consistency,
artistic style transfer, and compositional control while maintaining generation diver-
sity. ADRPO can also generalize to KL-regularized LLM fine-tuning, enhancing
existing online RL methods like GRPO while requiring no additional networks or
complex architectural changes. In LLM fine-tuning tasks, we observe that ADRPO
even demonstrates an emergent ability to escape local optima by actively increasing
exploration to discover superior policies, thus offering an effective, plug-and-play
solution to the exploration-exploitation challenge in generative model fine-tuning.

1 Introduction

Reinforcement learning fine-tuning has emerged as a powerful paradigm for aligning generative
models with human preferences, driving remarkable improvements in capabilities from text gener-
ation to image synthesis [22} |4, 34]. At the core of modern RLHF approaches lies a fundamental
challenge: effectively balancing divergence regularization against reward maximization during policy
optimization. This balance is critical as it determines whether models retain the beneficial properties
of their pre-trained foundation while adapting to better satisfy human preferences [26, 44, [2].

The current standard practice employs divergence regularization with fixed coefficients to constrain
policy updates - typically using Kullback-Leibler (KL) [31, 23] or Wasserstein-2 (W2) divergences
[L, [13]]. However, this approach creates an inherent dilemma that limits performance: strong regu-
larization preserves model capabilities but hampers reward optimization, while weak regularization
enables greater reward optimization but risks catastrophic forgetting, mode collapse, or reward
hacking [18},132,[33]]. This trade-off is particularly pronounced in generative models where preserving
diversity while improving quality represents a critical balance [3}[14]. Existing approaches like PPO
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[30], GRPO [31]], and DPO [26] 37]] employ fixed regularization coefficients that treat all data points
equally, regardless of whether the policy should prioritize exploitation (when rewards are reliable) or
exploration (when falling into suboptimal solutions). This one-size-fits-all approach fails to adapt to
the varying exploration needs across the complex landscapes of generative model policy optimization.

To address these limitations, we propose Adaptive Divergence Regularized Policy Optimization
(ADRPO), a novel framework that dynamically adjusts regularization strength using advantage
estimates [29,135)]. ADRPO employs advantage signals to fine-tune the exploration-exploitation trade-
off: high-advantage samples reduce regularization for aggressive optimization, while low-advantage
samples increase it for stability. This sample-level adaptation integrates seamlessly into training,
providing an efficient and automated approach. By aligning regularization with sample quality,
ADRPO overcomes the shortcomings of prior methods, delivering superior alignment and generative
performance across diverse tasks, as demonstrated in our experiments with text-to-image alignment
and language model fine-tuning. In summary, our approach makes several important contributions:

1. General RL Framework with Adaptive Divergence Regularization. We introduce
ADRPO as a general-purpose framework that dynamically adjusts regularization based on
advantage estimates, integrating with existing RL fine-tuning methods without architec-
tural changes. Our proposed methods address the exploration-exploitation dilemma while
preventing reward hacking and model collapse.

2. Superior Text-to-Image Alignment with Smaller Model. We first propose a novel online
RL method based on ADRPO, combining advantage-based policy optimization and adaptive
W2 regularization for fine-tuning flow matching models. Our experiments of fine-tuning
SD3 demonstrate ADRPO’s dominant Pareto frontier in the reward-diversity trade-off and
reward-divergence trade-off compared to DPO [26] and fixed-regularization approaches [13]
(See Figs. [2]and [3). Notably, our 2B parameter model outperforms larger 4.8B [38] and
12B [42] parameter models across attribute binding, compositional control, and semantic
consistency (See Figs. [I|and Tab. [I).

3. Emergent Exploration in LLMs. We also apply our ADRPO to improve GRPO [31]]
for online fine-tuning of LLMs (See Figs. @). ADRPO not only improves alignment but
exhibits an emergent ability to escape local optima by actively increasing exploration when
needed—a capability absent in fixed-regularization methods like GRPO.

4. Cross-Domain Applicability. ADRPO provides a unified solution for both continuous
(flow matching with W2 regularization) and discrete (LLMs with KL divergence) generative
paradigms, offering immediate practical benefits with minimal computational overhead.

2 Related Work

RL Fine-tuning for LLMs. Reinforcement learning has become the dominant approach for aligning
large language models with human preferences. Pioneering work by [4] established the RLHF
framework, which was later scaled by [22] to create models that better follow human instructions.
The algorithmic landscape has evolved from PPO [30] to more efficient alternatives like GRPO [31]]
and offline approaches like DPO [26]. These methods have significantly improved the reasoning
capabilities of models like DeepSeek-R1 [15] and improved their instruction-following abilities.
Despite their success, these approaches typically rely on fixed regularization parameters that treat
all samples equally, regardless of whether they represent promising directions for optimization or
uncertainty-laden regions requiring more conservative updates (See Fig. [).

RL Fine-tuning for Flow Matching Models. While RL fine-tuning is established for language
models, its application to flow matching (FM) models [21] presents unique exploration-exploitation
trade-off challenges due to their continuous-time nature and ODE-based sampling. Recent approaches
like Online Reward-Weighted Fine-Tuning with Wasserstein regularization [13]] and offline methods
like diffusion-DPO [37]] have made progress, but remain limited by fixed regularization schemes that
cannot adapt to sample-specific characteristics. This fundamental limitation restricts their ability to
optimally balance the critical exploration-exploitation trade-off necessary for effective fine-tuning of
state-of-the-art image generation models like SD3 [12] (See Tab. [T|and Figs. [2).

Divergence Regularization in RL Fine-tuning. Divergence regularization plays a crucial role in RL
fine-tuning by preventing the policy from deviating too far from the initial model, thus preserving
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desirable properties while allowing for improvement. For language models, KL divergence serves
as the standard metric in methods like PPO [30]], GRPO [31]], and DPO [26]], while flow models
benefit from Wasserstein distances [13] that better handle continuous distributions. Despite their
importance, existing approaches typically employ fixed regularization coefficients that fail to handle
the varying significance of regularization across different samples and different learning stages. This
limitation can lead to suboptimal trade-offs between preserving model capabilities and maximizing
rewards (e.g., GRPO in Fig. @), risking model collapse [32,[16]] or insufficient improvement. Our
work addresses this gap through adaptive regularization based on advantage estimates, providing a
novel approach to dynamically balancing exploration and exploitation during training.

3 Method

3.1 Problem Formulation

In this paper, we address the challenges of fine-tuning pre-trained generative models through online
RL to improve their alignment with human preferences [4} 23]]. Given a pre-trained reference policy
Tt and its fine-tuned counterpart 7y parameterized by €, our objective is to maximize the expected
user-defined reward E,.,, [R(z, ¢)], where R(z, ¢) quantifies human preference for generation z
conditioned on context ¢ ~ p(c) (e.g., CLIP Score [24] for T2I tasks). This context may be a text
prompt in LLMs [40} 141} 110] or an image description in text-to-image (T2I) models [12, |38} 42]]. The
standard approach in RL fine-tuning formulates this as a constrained optimization problem:

J(e) = ]Ezwfrg,CNp(c) [R(J), C)] - ﬁ . D(Wey 7Tref) (1)

Here, p(c) is the sample distribution of prompts (e.g., uniform sampling in our paper), D(mg, Trer)
represents a divergence measure between the fine-tuned and reference policies—typically Kullback-
Leibler divergence (KL) for discrete generative models [30, 31} 26] or Wasserstein distance for
continuous distributions [36 (1}, [13]]. The coefficient 3 controls the trade-off between reward opti-
mization and preservation of the pre-trained model’s capabilities (e.g., diversity).

3.2 Adaptive Divergence Regularized Policy Optimization

Recent approaches to online RL fine-tuning of generative models have explored different divergence
measures, including W2 regularization in flow matching models [[13] and KL divergence in LLMs
[31, 23]]. However, these methods still rely on fixed regularization schemes that treat all samples
equally, regardless of their potential for reward improvement or risk of degradation. This fundamental
challenge of adaptive regularization—dynamically balancing exploration and exploitation (See Figs.
[3land[) at the individual sample level—remains largely unaddressed in the literature.

3.2.1 Conventional RL Fine-tuning Approaches

The conventional RL objective in Equation (I)) can be rewritten as a combination of two loss terms:
Lriur(0) = Lru(0) + B - Lp(0) @)

where L1 (0) is the policy optimization term such as policy gradient [30] or reward-weighting
[13] and Lp(0) = D(mg, met) is the divergence regularization term, such as KL divergence in
LLMs [31] or W2 divergence in flow matching models [13]]. In practice, this formulation has been
instantiated in various ways. For example, Group Relative Policy Optimization (GRPO) [31] employs
a KL-regularized policy gradient objective for LLMs:

Larro(0) = Lpg(0) + B - Dxr(ma]|Tret) 3)

where Lpg () represents a clipped policy gradient loss based on group-level advantage estimation.
Similarly, ORW-CFM-W?2 [13] applies a W2 regularization term for flow matching models:

Lorw-cimw2(0) = Lorw + B - Ecpz, [[Vo (4, t, ¢) — Vier(24, 1, €)|?]

where Lorw = Ee¢ gz, ¢, [w(Z1, €) * |[Vo(z4, T, ¢) — u;|?] is the reward weighted loss and v and Vit
are the velocity fields of the fine-tuned and reference policies, respectively.

Critically, in all these approaches, the regularization strength 5 remains constant across all samples
and training steps, failing to adapt to the varying quality of generated samples.
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3.2.2 Our Approach: Advantage-Based Adaptive Regularization

We introduce Adaptive Divergence Regularized Policy Optimization (ADRPO), a principled frame-
work that dynamically adjusts regularization strength based on the estimated advantages of individual
samples. The key insight in ADRPO is that the regularization coefficient should not be static, but
should vary inversely with the sample’s estimated advantage. Formally, we propose:

Lapreo(0) = Lre(0) + (Bo — A) - Lp(0) 4)

where A is an advantage estimate for the current sample and [ is a baseline regularization coefficient.
This formulation creates an adaptive regularization coefficient 5, = Sy — A that adapts based on
the quality of each sample. This adaptive mechanism creates a natural balance: 1) Exploitation:
in regions where the policy generates high-quality samples (high advantage), ADRPO allows for
efficient exploitation by reducing divergence penalties; 2) Exploration: in uncertain or low-quality
regions (low advantage), it enforces stronger regularization to maintain stability and preserve the
model’s original capabilities (See Figs. [3|and ).

Based on Equ. (@), our ADRPO can be seamlessly integrated with various existing RL fine-tuning
methods. For instance, when applied to GRPO for large language models (LLMs), the objective
becomes LADRPO-GRPO(H) = Epc,(a) + (ﬂo — AGRPO) . DKL(ﬂ'g Hﬂ'ref), where Agrpo is the advantage
estimate from GRPO’s group-based estimation procedure [31 [15]].

3.3 ADRPO for Flow Matching Generative Models

We now demonstrate how our ADRPO framework can be effectively applied to fine-tuning flow
matching models [21}136], particularly focusing on text-to-image generation models like SD3 [[12].

3.3.1 Flow Matching Preliminaries

Flow matching (FM) models define a continuous-time transformation that maps a simple prior
distribution p(xg) (e.g., Gaussian) to a complex target distribution via a probability flow p;. An
FM model learns a velocity field vy (z¢,t,c) that approximates the true velocity field us(x¢|c).
However, since u;(x¢|c) is often intractable [21]], Conditional Flow Matching (CFM) [36] proposes
an equivalent yet tractable objective by conditioning the flow on target samples z; while learning a
conditional target velocity field (e.g., u;(x¢|x1,c) = x1 — ¢ for linear interpolation path [21]]):

Lo (0) = Ecp(c) tmU(0,1),01 ~pasa(zle)ze~pi (e |21,0) [ VO (Tt 1 €) — we @]z, C)|2] Q)

Given a pre-trained reference model like SD3 [12]], flow matching fine-tuning aims to align generations
with human preferences while preserving generative diversity. Traditional approaches, including
supervised fine-tuning and offline RL methods like DPO [26} [37]], sample target states €1 ~ pgaia(x|C)
from a fixed human-curated dataset—a stable but limiting approach that restricts exploration of
potentially better policy regions (See Figs. 2Jand [3]). In contrast, our proposed ADRPO framework
embraces an online RL paradigm, sampling target states from the fine-tuned policy itself: x1 ~
Py~ " (z|c), with p; " representing the policy at the previous iteration. This online sampling strategy
enables the model to continuously improve upon its own generations and explore the policy space
more effectively but is prone to collapse [13l], while our adaptive regularization mechanism specifically
addresses the inherent instability and exploration-exploitation dilemma in online RL fine-tuning.

3.3.2 ADRPO with Wasserstein Regularization

A key observation across RL fine-tuning methods [31} [13} 23] is that effective policy optimiza-
tion requires differentially weighting samples based on quality (e.g., upweighting probabilities
of high-reward samples while downweighting poor ones). While traditional RL methods scale
updates by advantage estimates [30, |29]], this principle—strengthening high-quality trajectories
while weakening low-quality ones based on advantage estimates [30, 35]—hasn’t been fully lever-
aged in flow matching fine-tuning. Current approaches like reward-weighted flow matching [[13]]
can only down-weight poor samples without actively discouraging them, significantly reducing
efficiency in high-dimensional spaces (e.g., image generation) where undesirable regions vastly
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outnumber desirable ones. We address this limitation by introducing advantage-based policy op-
timization for flow matching models, creating bidirectional learning signals through advantage
estimates rather than non-negative reward weights to both enhance high-quality generations and
actively suppress poor ones. Specifically, we propose an advantage-weighted flow matching objective:
LrL(0) = E o op(e) tmU(0,1) 01~ wimpe (w1 f1,0) [A(x1,¢) - |va(zs,t, ) — ug|?], where pj ' is the
current fine-tuned policy and A(z1, ¢) represents the estimated advantage for sample 1 given context
¢, vo(xs, t, c) is the learned velocity field, z; = (1 — t)xg + tx1, and uy = x1 — x is the target
velocity for the straight-line interpolation in FM models [21].

This formulation creates a fundamentally different learning dynamic compared to reward-weighting
approaches. For samples with positive advantage (A > 0), the objective encourages matching the
target velocity field, strengthening high-quality generations. Conversely, for samples with negative
advantage (A < 0), the sign inversion reverses the gradient direction, actively pushing the model
away from poor generations rather than merely down-weighting them. Meanwhile, average-quality
samples (where A ~ 0) contribute minimally to the gradient, naturally focusing computational
resources on the most informative examples and facilitating efficient convergence (See Fig. [3).

Advantage Estimation. For FM models, we compute the advantage as the difference between the
reward of a sample and the expected reward under the current policy as A(x1,¢) = R(z1,¢) — V(c),
where R(x1,c) is the human preference reward for the generated sample x; given context ¢, and
V(¢) is a baseline value function estimated as the average reward over a batch of samples for the
same context, which is computationally efficient.

Adaptive Regularization. Based on Equ. @), we further propose to dynamically adjust the regular-
ization strength based on the same advantage estimates. This creates a unified framework where the
exploration-exploitation balance is automatically modulated at the individual sample level:

EADRPO’FM(G) = ]ECNp(c),tNU(O,l),CEle371,thpt(:Et|x1,c) [A(xl’ C) : |V9((£t, t, C) - ut|2]

6)
+(60 - A(l']_, C)) : Ec,t,zt HVG (mta t) C) - Vref(xfm t7 C) |2]

The adaptive regularization coefficient 5,y = B9 — A(x1, ¢) establishes a dynamic adaptation mecha-
nism responsive to sample quality. For high-advantage samples (A > 0), regularization decreases
proportionally. For low-advantage samples (A < 0), regularization strengthens proportionally,
constraining updates to maintain proximity to the reference model. This bidirectional adaptation
fundamentally transforms the exploration-exploitation landscape (Figure [3), replacing fixed regular-
ization with sample-wise W2 regularization that continuously adapt to the evolving policies.

Stabilization, Efficient Learning. To ensure stable training with our adaptive advantage-based
approach, we use advantage clipping that constrains advantages to a reasonable range [Amin, Amax|
as Actippea (21, ¢) = clip(A(x1, ), Amin; Amax). We also use LoRA [17] for efficient learning.

3.4 ADRPO for Fine-tuning LLMs

Applying our ADRPO framework to Large Language Models (LLMs) can address the limitation
of static regularization in conventional online RL methods by dynamically controlling the penalty
for deviating from the pre-trained policy based on sample advantage. High-advantage responses
indicate promising directions warranting reduced regularization to encourage policy optimization,
while low-advantage responses signal areas to avoid, requiring increased regularization to maintain
proximity to the reliable pre-trained model and prevent undesirable outputs or instability. We integrate
this principle with GRPO [31]], modifying its objective by making the KL divergence regularization
strength dependent on the advantage estimate (Agrpo) for each sample. The objective becomes:

Laprro-Greo () = Lpa (0) + (Bo — Acrro) - Dk (7o Tret) @)

Here, Lpc(0) is the clipped policy gradient term [31]] (i.e., — min(A=ratio, Axclip(ratio, 1—¢, 1+¢))
and ratio = -£2), Dy, is the KL divergence, and [y is a baseline regularization. The term

7790
(Bo — Acgreo ) acts as an adaptive coefficient, decreasing for good samples (Agrpo > 0) to promote
exploitation and increasing for poor samples (Agreo < 0) to enforce conservative exploration,
allowing ADRPO-GRPO to achieve a better exploration-exploitation trade-off (See Fig. [4).
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Table 1: Comparison of text-to-image generation methods across different evaluation metrics. Best
scores are highlighted in blue , second-best in green . We report standard errors estimated over 3
random seeds. ClipDiversity measures the mean pairwise distance of CLIP embeddings [24! [13]].

Method Task Metrics Image Quality Human Preference
ClipScore? [24]  ClipDiversity? [24] ~ Aesthetict [39] BLIPScoref [L1] ImageReward? [39] PicScoret [19]
Base Model
SD3 (2B) [12] 29.27+0.42 5.08+0.52 5.53+0.09 0.501+0.007 0.97+0.13 20.81+0.09
Other Flow Matching Models
FLUX.1-Dev (12B) [42] 31.72+0.48 4.29+0.42 5.95+0.05 0.492+0.004 1.11+0.10 21.83+0.11
SANA-1.5 (4.8B) [38] 32.18+0.36 4.31+0.50 5.89+0.12 0.526+0.006 1.45+0.08 21.85+0.15
SD3 Fine-tuning Methods
SD3+RAFT [8] 29.35+0.27 1.85+0.19 4.5440.04 0.512+0.001 0.22+0.08 19.21+0.02
SD3+DPO |37 31.30+0.52 4.78+0.46 5.82+0.05 0.509+0.005 1.48+0.10 21.31+0.10
SD3+ORW-CFM-W?2 [13] 31.42+0.39 3.86+0.37 5.29+0.05 0.542+0.006 1.2240.10 20.97+0.11
SD3+ADRPO (Ours) 32.97+0.46 5.13+0.47 6.27+0.06 0.567-+0.004 1.61+0.05 22.78+0.15

4 Experiment

4.1 Experimental Setup

For our experiments, we evaluated ADRPO across two distinct domains: fine-tuning flow matching
model and LLMs. Fine-tuning FM Model. We implemented ADRPO on SD3 (2B parameters) using
a diverse range of prompts from DrawBench [28] that test various generative capabilities including
color attribute binding, compositional reasoning, object counting, spatial relationships, and text
rendering. We also incorporated complex prompts from RAFT [8] for artistic style transfer tasks (as
shown in Figure[T)). Our method employed the advantage-based ADRPO loss from Equation (6) with
Bo=1and Aqr = 1, Appinn = —1 for fine-tuning SD3 models while using CLIP score as rewards
[24]. We conducted comprehensive comparisons against both offline methods like DPO [37] and on-
line approaches with fixed regularization such as ORW-CFM-W2 [13]]. Additionally, we benchmarked
against substantially larger models including FLUX.1 Dev (12B) [42] and SANA-1.5 (4.8B) [38]]
to evaluate parameter efficiency. Fine-tuning LL.Ms: We fine-tuned Qwen?2 [40] and Qwen3 [41]]
models using RM-Gemma-2B [27, 8] as the reward model on RLHFlow/test_generation_2k prompt
dataset [8] (i.e., a mixture of UltraFeedback [55], Capybara [6], Ultralnteract [43]] and OpenOrca [20]).
ADRPO was integrated with GRPO using KL-divergence regularization as described in Equation
with By = 0.04, A = —0.04, A0 = 0.04, and compared against standard GRPO with fixed
regularization (5 = 0.04 [31])) to demonstrate our superior exploration-exploitation balance. Both
experimental tracks employed advantage clipping techniques to ensure training stability. We chose
Bo equal to 3 in fixed regularization methods for fairness. See App. [B|and [C]for more details.

4.2 Main Results

Table [I] presents a comprehensive evaluation of text-to-image generation methods, demonstrating
that our proposed ADRPO establishes a superior Pareto frontier in all metrics and achieves the
best reward-diversity trade-off. Unlike competing approaches such as DPO and ORW-CFM-W2
that make significant compromises—improving semantic alignment at the cost of diversity or vice
versa—ADRPO achieves state-of-the-art performance in both dimensions simultaneously through
its dynamic regularization mechanism in Equ. (6). Our adaptive approach intelligently modulates
regularization strength based on sample-specific advantage estimates, enabling aggressive exploitation
in high-reward regions while maintaining exploration elsewhere (See Figures [3] and ). Perhaps
most remarkably, our method enables a relatively modest 2B parameter SD3 model to outperform
substantially larger models including FLUX.1-Dev (12B) [42] and SANA-1.5 (4.8B) [38]] across all
evaluation metrics, particularly in human preferences. This quantitative superiority is visually evident
in our qualitative results in Figures[I|and 2] where ADRPO-generated images demonstrate exceptional
attribute binding, spatial understanding, text rendering, and artistic style transfer capabilities that
even larger models struggle to match. Together, these findings suggest that adaptive regularization
offers a more efficient path to performance improvement than simply scaling model parameters.
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4.3 Qualitative Analysis

Jacques-Louis David style Edward Hopper Van Gogh style A apple and a
big ben style vase astronaut backpack.

SD3
2B

FLUX.1
Dev
(128)

SANA-1.5
(4.88)

SD3+
ADRPO
(2B,0urs)

Figure 1: Qualitative Comparison with Large FM Generative Models. Our ADRPO demonstrates
superior performance in , , and Counting.

Comparison with SOTA Large FM Models. Figure [I] shows our ADRPO fine-tuned SD3 model
(2B parameters) significantly outperforming much larger models like FLUX.1 Dev (12B) and SANA-
1.5 (4.8B). This challenges the conventional wisdom that parameter scaling is the primary path
to performance improvements. Our method excels in areas where larger models struggle: for
artistic style transfer ("Jacques-Louis David style big ben"), complex compositions ("Van Gogh style
astronaut"), and attribute binding ("green apple and black backpack"), ADRPO maintains both style
accuracy and compositional integrity while larger models introduce visual artifacts despite their 2-6x
parameter counts. These results demonstrate that adaptive regularization can enable smaller models
to match or exceed much larger models’ capabilities. See App. [D]for more results.

A storefront with ‘Diffusion’ A zebra to the right A colored Edward Hopper
written on it. of a fire hydrant. banana style vase

SD3+
ORW-
CFM-w2

SD3+
ADRPO
(Ours)

Figure 2: Qualitative Comparison with Other RL Fine-tuning Methods. Our ADRPO demon-
strates superior performance in , Text Rendering, s
Counting and Position. We use a similar DPO method as described in [[7]] to fine-tune SD3 models.

Comparison with other RL Fine-tuning Methods. Figure [2] demonstrates ADRPO’s clear su-
periority over existing reinforcement learning fine-tuning approaches. While DPO [37] preserves
diversity at the cost of semantic alignment and ORW-CFM-W?2 [13] improves alignment but sacrifices
diversity, ADRPO achieves excellence in both dimensions through advantage-guided regularization.
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This is evident across text rendering ("Diffusion” storefront), attribute binding (zebra positioning),
coloring (black banana), and style transfer tasks, where our method consistently delivers superior
compositional accuracy. By dynamically modulating regularization strength—increasing constraints
for uncertain samples while allowing greater divergence for reliable ones—ADRPO effectively
resolves the exploration-exploitation dilemma that static approaches cannot address.

4.4 Visualizing Exploration-Exploitation Trade-off in Policy Optimization

Reward vs Diversity Trade-off Final Reward Final Diversity

- Eary. ransparent @, 52

« Convergent: solid 20,
el 2
% 325
325 ° 50
32.0 320
48
315 315
B l[! 46
5
g 310 iny 310
]
K 44
305 305
42
30.0 30.0
40
295 295
3.8
A4 200 |
4.0 4.2 4.4 46 4.8 50 5.2 54
Diversity
Method
® ADRPO (Ours) W DPO ORW-CFM-W2 ‘ Pre-trained SD3
Reward vs W2 Divergence Trade-off Final Reward Final W2 Divergence
A
> N
325 g ina 325 0.0200
00175
320 320
0.0150
315 315
B E,{ 0.0125
5 31.0 rlr!l 310
e h 0.0100
305 305
0.0075
300 300 0.0050
295 205 0.0025
* | -
0000 0005 0010 0015 0020 290 00000
W2 Divergence
Method
® ADRPO(Ours) W DPO ORW-CFMW2  4p Pre-trained SD3

Figure 3: Reward-Diversity/Divergence Trade-off. Left: policy optimization trajectories (using a
same seed) of different methods throughout training, with transparency indicating progression from
early (transparent) to convergent (solid) to final (star) checkpoints. Each point is a learned policy
from different iterations. Center and right: final reward and diversity/divergence across methods.

Reward Hacking Mitigation. Figs. [3] reveals distinct vulnerability patterns to reward hacking
across methods. While DPO maintains moderate diversity but plateaus in reward optimization, ORW-
CFM-W?2 aggressively pursues reward optimization but exhibits significant diversity collapse (right
panel), resulting in template-like generations (See Fig. 2). Our ADRPO, through advantage-guided
regularization, achieves the highest reward without sacrificing diversity—a combination neither
competing method attains. This translates to superior generations with precise attribute binding and
high visual quality while maintaining creative flexibility. See App. |D|for whole learning curves.

Exploration-Exploitation Balance and Divergence Control. The trajectory visualization in Figs.
B3] (left) captures each method’s navigation of the exploration-exploitation landscape. The bottom
plots further illustrate ADRPO’s advantage in maintaining minimal W2 divergence while maximizing
reward. While DPO makes modest improvements before plateauing and ORW-CFM-W?2 follows an
exploitation path that compromises diversity, ADRPO consistently expands the Pareto frontier. This
superior balancing act stems from our adaptive mechanism making sample-specific regularization
decisions, effectively resolving the dilemma that fixed-coefficient methods cannot address.

4.5 Application to Fine-tuning LLMs

To demonstrate ADRPO’s versatility beyond FM models, we applied our approach to LLM fine-tuning
with the Qwen2 [40]] and Qwen3 [41]] model families using RM-Gemma-2B [8| 9} 27]] as the reward
model, as shown in Figure@ All methods are evaluated in RLHFlow/test_generation_2k dataset [8].

Superior Exploration-Exploitation Control. The policy optimization trajectories (left panels) in
Figure @] reveal distinct patterns between methods. While GRPO maintains high entropy throughout
training but struggles to find high-reward regions—showing substantial horizontal movement with
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Figure 4: Ablation Studies and Exploration-Exploitation Trade-off in Fine-tuning LLMs. Left: policy
optimization trajectories in reward-entropy space for ADRPO and GRPO (i.e., fixed 3 as [31])) across
Qwen2 (0.5B) [40] (top) and Qwen3 (0.6B) [41] (bottom) models, with transparency indicating
progression from early to final checkpoints. Center and right: Final performance of different methods.

limited vertical improvement—ADRPO implements a strategic exploration pattern that efficiently
navigates the exploration-exploitation landscape. For Qwen3 (bottom left), ADRPO exhibits a
remarkable ability to first explore lower entropy regions, then actively increase entropy to escape
local optima, before converging to a final checkpoint with 5x higher reward than GRPO.

Preventing Model Collapse. ADRPO demonstrates superior resistance to model collapse during
extended training. GRPO’s performance tends to plateau or deteriorate as training progresses (also
see Fig. [D.2.1)), with later checkpoints (darker red points) often showing lower rewards than earlier
ones—a common failure mode of fixed-regularization methods. In contrast, ADRPO shows consistent
improvement throughout training by dynamically adjusting regularization strength based on advantage
estimates, eliminating the need for careful early stopping to prevent performance regression.

Cross-Architecture Generalizability. The consistent superior performance across both flow match-
ing models and different LLM architectures confirms that ADRPO addresses fundamental limitations
in reinforcement learning fine-tuning. By adapting regularization strength to sample-specific advan-
tage estimates, our method provides a generalizable solution to the exploration-exploitation dilemma
that effectively transfers between domains. See App. [D]for whole learning curves.

5 Conclusion

The exploration-exploitation dilemma represents a critical challenge in generative model RL fine-
tuning that fixed regularization approaches fail to address. To tackle this, we propose Adaptive
Divergence Regularized Policy Optimization (ADRPO), which dynamically adjusts regularization
strength based on sample-specific advantage estimates—reducing constraints for high-value samples
while strengthening them for poor ones. Our experiments demonstrate ADRPO’s effectiveness
across domains: in text-to-image generation, it outperforms other methods in alignment, quality, and
diversity, enabling our 2B parameter SD3 model to surpass much larger models (4.8B and 12B) in
various tasks; in LLM fine-tuning, it exhibits an emergent ability to escape local optima by actively
increasing exploration. ADRPO establishes a superior Pareto frontier in the reward-diversity trade-off,
confirming that sample-adaptive regularization offers a plug-and-play solution that generalizes across
generative domains with minimal computational overhead. See App. [A]for more discussion.
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A Discussion

In reinforcement learning fine-tuning of generative models, the exploration-exploitation trade-off
represents a critical challenge: too much exploitation leads to reward hacking and diversity collapse,
while excessive exploration prevents effective alignment. This dilemma is particularly pronounced
in online RL fine-tuning where models continuously learn from their own generations. Existing
methods rely on fixed regularization coefficients that treat all samples equally, regardless of their
reward potential or uncertainty, creating an inherent tension between preserving model capabilities
and optimizing for reward.

Key Insight 1: ADRPO solves the fundamental exploration-exploitation dilemma in generative
model fine-tuning through a principled adaptive mechanism where regularization strength
automatically scales with sample-specific advantage estimates.

In this paper, we introduced Adaptive Divergence Regularized Policy Optimization (ADRPO), a
novel approach that fundamentally reimagines how divergence regularization is applied during gen-
erative model fine-tuning. Unlike existing approaches that employ fixed regularization coefficients,
ADRPO dynamically modulates regularization strength based on sample-specific advantage estimates,
effectively turning the static trade-off parameter into an adaptive function. Through comprehensive
experimentation, we have demonstrated that this simple yet powerful modification successfully over-
comes the inherent limitations of fixed-regularization methods across both text-to-image generation
and language model domains, establishing a new paradigm for reinforcement learning fine-tuning of
generative models.

Key Finding 1: ADRPO establishes a dominant Pareto frontier in the reward-diversity trade-
off, achieving state-of-the-art performance in both dimensions simultaneously where previous
methods could only optimize one at the expense of the other (Figure [3).

Our experimental results reveal critical insights about the nature of reinforcement learning fine-
tuning. The reward-diversity trade-off, long considered an unavoidable compromise in generative
model alignment, can be effectively navigated through our adaptive regularization framework. As
shown in Figure [3] (left), DPO preserves moderate diversity but plateaus in reward optimization,
while ORW-CFM-W2 improves alignment but suffers significant diversity collapse. In contrast,
ADRPO achieves dominant performance in both dimensions simultaneously (Figure [3] center and
right panels), establishing a new state-of-the-art that was previously considered unattainable. This is
achieved through our bidirectional adaptation mechanism, where regularization strength decreases
for high-advantage samples to enable aggressive optimization while increasing for low-advantage
samples to maintain stability and diversity.

Key Finding 2: ADRPO enables remarkable parameter efficiency, allowing a 2B parameter
model to consistently outperform substantially larger models (4.8B and 12B), demonstrating
that optimization strategy can be more consequential than model scale (Table[T).

The parameter efficiency enabled by our approach challenges fundamental assumptions about scaling
laws in generative AL. As demonstrated in Table[I] our 2B parameter SD3 model fine-tuned with
ADRPO consistently outperformed substantially larger models including FLUX.1-Dev (12B) and
SANA-1.5 (4.8B) across all evaluation metrics—from ClipScore to human preference metrics like
ImageReward and PicScore. This finding suggests that optimization strategy can be more consequen-
tial than raw parameter count for generative quality, with profound implications for both research
focus and practical deployment. By enabling smaller models to match or exceed the capabilities of
models 2-6x their size, ADRPO offers a path to personal access to high-quality generative Al while
significantly reducing computational and environmental costs. The qualitative results in Figure ] fur-
ther support this finding, showing superior attribute binding and style transfer capabilities compared
to larger models.

Key Finding 3: ADRPO exhibits an emergent ability to intelligently navigate the exploration-
exploitation landscape, actively increasing exploration to escape local optima—a sophisticated
capability that emerges naturally from our advantage-guided mechanism (Figure [4).

Perhaps the most surprising property of ADRPO is its emergent ability to escape local optima through
strategic exploration. As visualized in Figure ] our LLM experiments with Qwen3 revealed that
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ADRPO implements a sophisticated optimization trajectory absent in fixed-regularization methods.
While GRPO maintained high entropy throughout training but struggled to find high-reward regions
(Figure[4] bottom left, red points), ADRPO exhibited a remarkable three-phase pattern: first exploring
lower entropy regions, then actively increasing entropy to escape local optima, before finally converg-
ing to a high-reward solution (Figure ] bottom left, blue trajectory). This behavior—reminiscent
of sophisticated simulated annealing schedules—emerged organically from our advantage-guided
adaptive mechanism without explicit programming, resulting in final checkpoints with 5x higher
reward than GRPO (Figure ] bottom center). This finding suggests that advantage-guided regulariza-
tion may unlock entirely new regions of policy space previously inaccessible to fixed-regularization
methods.

A.1 Limitations

While ADRPO demonstrates significant improvements over existing approaches, several limitations
should be acknowledged. Our experiments, though comprehensive, were primarily conducted on
models of moderate scale (SD3 2B, Qwen2-0.5B, and Qwen3-0.6B) due to computational constraints.
An important avenue for future work is extending these findings to much larger foundation models,
where the exploration-exploitation dilemma becomes even more critical. Particularly, models with
parameters in the hundreds of billions are known to be more susceptible to training collapse during
online RL fine-tuning, potentially making adaptive regularization even more crucial at scale.

The advantage-based formulation introduces a slight computational overhead compared to purely
reward-weighted methods like ORW-CFM-W?2 [[13]] and RAFT [8]]. Though we mitigate this through
efficient batch-based normalization techniques similar to those used in GRPO [31]], further optimiza-
tion could reduce this overhead. Our current implementation of advantage estimation using batch
statistics works well in practice but could be improved with more sophisticated value approximation
methods, especially for complex reward landscapes with high variance.

A.2 Broader Impact

In general, ADRPO represents a significant advance in reinforcement learning fine-tuning methodol-
ogy with potential impacts extending beyond the specific models tested. The ability to efficiently
navigate the exploration-exploitation trade-off through adaptive regularization addresses a fundamen-
tal challenge in the field, potentially influencing how the broader research community approaches
model alignment.

Our finding that a relatively small model (2B parameters) can outperform substantially larger models
(4.8B and 12B parameters) when fine-tuned with ADRPO has important implications for personal
access to high-quality generative Al. This parameter efficiency could significantly reduce the compu-
tational resources required for state-of-the-art performance, making advanced generative capabilities
more accessible to researchers and organizations with limited resources while reducing the environ-
mental footprint of both training and deploying such systems.

The emergent ability to escape local optima demonstrated in our LLM experiments suggests that
advantage-guided adaptive regularization may unlock previously unattainable regions of policy space.
This capability could inspire new approaches to optimization in high-dimensional spaces where fixed
regularization schemes tend to converge prematurely to a sub-optimal.

Our work also introduces a unified framework that bridges continuous and discrete generative
paradigms, offering a consistent solution to the exploration-exploitation dilemma across domains.
This cross-domain applicability could foster greater knowledge transfer between previously disparate
research communities working on different types of generative models.
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B Experimental Details

In this section, we provide comprehensive details of our experimental setup for both text-to-image
alignment and language model fine-tuning tasks. To maintain clarity, we present these domains
separately.

B.1 Flow Matching Model Fine-tuning Tasks
B.1.1 Baseline Methods

Base Model We adopt Stable Diffusion 3 (SD3) [12] as our base model—a 2B parameter architec-
ture that combines a Multimodal Diffusion Transformer (MMDIiT) backbone with a rectified flow
training objective. SD3 represents the latest evolution of latent diffusion models, introducing a joint
text-image Transformer that enables rich bidirectional attention between prompt tokens and image
latents. Unlike earlier score-based approaches, SD3 is trained via conditional flow matching under a
rectified trajectory, where the model learns to predict direct velocity fields between noise and data,
improving sample efficiency and semantic alignment. It leverages multiple frozen text encoders
(CLIP and T5) and improved autoencoding for high-resolution image synthesis, while achieving
state-of-the-art performance on prompt fidelity, compositional reasoning, and text rendering. This
combination of high quality, controllability, and architectural flexibility makes SD3 a robust and
representative base model for studying the effects of reinforcement learning fine-tuning, such as
ADRPO.

Larger-Scale Flow Matching Models To comprehensively evaluate ADRPO against parameter
scaling approaches, we selected two state-of-the-art text-to-image diffusion models that leverage
flow-matching training objectives and significantly larger parameter counts than our base model.
These models serve as strong upper baselines in terms of both capacity and generation quality:

1. FLUX.1-Dev [42], with 12B parameters, represents the high-performance frontier of open-
source flow-matching architectures. It employs a rectified flow training objective based on
Wasserstein-2 optimal transport, enabling more stable and efficient training compared to
traditional score-matching methods. FLUX integrates a multimodal diffusion transformer
(MMDiT) with powerful prompt conditioning mechanisms, achieving near-photorealistic
output, superior compositional fidelity, and high stylistic diversity. It is widely regarded as
one of the most capable open models in terms of prompt adherence, fine-grained semantic
alignment, and artistic control.

2. SANA-1.5 [38]], with 4.8B parameters, serves as a strong intermediate-scale baseline. It
introduces an efficient diffusion transformer architecture that combines linear attention
mechanisms and a highly compressed autoencoder (32x downsampling), enabling high-
resolution generation at lower computational cost. SANA adopts a decoder-style language
model for text conditioning and achieves state-of-the-art results on the GenEval benchmark
for prompt-image alignment. Despite its moderate size, SANA.1.5 offers a competitive
trade-off between generation quality, efficiency, and controllability.

Both models exemplify the benefits of scaling parameter count and architectural sophistication within
the flow-matching paradigm. By comparing against them, we isolate the advantages of ADRPO in
improving alignment and control without relying solely on larger models. This allows us to highlight
ADRPO’s efficiency and generalization capabilities, especially when applied to smaller models such
as our 2B-parameter SD3 baseline.

RL Baseline Methods For fine-tuning method comparisons, we included approaches representing
the most representative spectrum of current techniques:

RAFT [8] implements a reward-ranked fine-tuning approach that selects high-quality outputs based
on reward scores, providing a online RL baseline. This approach has demonstrated considerable effec-
tiveness in improving generative models but lacks the adaptive divergence regularization mechanisms
essential for preserving model capabilities during policy optimization.

DPO [37] adapts the Direct Preference Optimization method to flow matching models, providing an
established offline RL baseline. We apply diffusion-DPO to flow matching following methodologies
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established in recent literature [7]. This approach offers stable optimization and effective diversity
preservation through its implicit regularization properties, though it may be limited in its ability
to explore the full policy space due to its offline nature. Given DPO’s widespread adoption and
demonstrated success across various fine-tuning tasks, it serves as our primary offline RL fine-tuning
baseline.

ORW-CFM-W2 [13]] represents the current state-of-the-art in online RL fine-tuning for flow matching
models, employing fixed Wasserstein-2 regularization combined with reward weighting. As the first
online RL fine-tuning method developed specifically for flow matching models, it achieves leading
performance in this domain through its W2 regularized online RL framework. This method provides a
crucial benchmark against which to evaluate our ADRPO approach, as it represents the online SOTA
method with fixed Wasserstein-2 regularization, allowing us to directly highlight the effectiveness of
our proposed adaptive divergence regularization mechanism.

B.1.2 Reward Models and Evaluation

For text-to-image generation, we implemented a comprehensive reward system combining multiple
complementary models to evaluate different aspects of generation quality:

1. Reward Model. We used CLIP Score [25] to compute cosine similarity between text
prompts and generated images (ClipScore) as our reward model for all text-to-image align-
ment task.

2. Quality Assessment. We employed a aesthetic predictor to evaluate visual appeal from
ImageReward [39].

3. Human Preference Models. We incorporated ImageReward [39]], trained on direct human
judgments, and PickScore [[19], developed through large-scale pick-one-from-four prefer-
ence data, to align our generations with human aesthetic preferences. We complemented
this with BLIP-based [[11] evaluation to mitigate architecture-specific biases.

4. Diversity Evaluation. For diversity evaluation, we developed ClipDiversity, which measures
the average pairwise distance between CLIP embeddings of multiple generated images of
current FM model.

B.1.3 Prompt Datasets

Our text-to-image experiments utilized a diverse collection of prompts selected to evaluate different
capabilities. DrawBench [28]] provided our primary test set, covering attribute binding, spatial
relationships, counting accuracy, and text rendering. We extended this with artistic style prompts
from RAFT [8] (e.g., "Van Gogh style astronaut") and custom compositional prompts testing multi-
object relationships (e.g., "A green apple and a black backpack").

B.2 LLM Fine-tuning Tasks
B.2.1 Baseline Methods

Base Models For our language model experiments, we employed Qwen2 [40] and Qwen3 [41]
models as base architectures, representing recent advancements in autoregressive LLM models. These
models demonstrate strong foundational capabilities and serve as robust pre-trained reference model
for fine-tuning experiments. Specifically, Qwen2 and Qwen3 incorporate key architectural enhance-
ments such as Grouped Query Attention (GQA), RoPE positional encoding, and long-context support
(up to 128K for Qwen3), which contribute to efficient inference and robust context handling. More-
over, despite their relatively small parameter sizes (0.5B and 0.6B respectively), these models exhibit
competitive performance across a range of reasoning, code generation, and language understanding
benchmarks. Their strong pretraining on diverse multilingual and domain-specific corpora—including
high-quality instructional data, code, and math—ensures excellent generalization. Qwen3 further
introduces a hybrid prompting paradigm that enables dynamic switching between direct answering
and step-by-step reasoning, significantly enhancing the model’s flexibility and interpretability during
instruction-following tasks. These strengths make Qwen2 and Qwen3 especially well-suited for
fine-tuning via reinforcement learning from human feedback (RLHF), where high-quality priors and
reasoning ability are essential for aligning model behavior with human preferences.
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RL Baseline Methods For RL fine-tuning comparison, we selected GRPO [31]] with fixed KL
regularization (8 = 0.04 [31]) as it represents the current state-of-the-art in online RL fine-tuning for
LLMs. GRPO improves upon earlier methods like PPO [30] through group-level advantage estimation
and more efficient policy optimization. However, it crucially still relies on static regularization that
treats all samples equally regardless of their quality or uncertainty. This limitation makes GRPO an
ideal candidate for demonstrating the advantages of our adaptive regularization approach, as both
methods share the same underlying optimization framework but differ specifically in their treatment
of regularization (also can be served as our ablation studies).

B.2.2 Reward Model and Evaluation

For LLM fine-tuning, we used RM-Gemma-2B [27, |8], a reward model built upon the Gemma-2B
language model and fine-tuned using a diverse collection of human preference datasets. RM-Gemma-
2B maps input completions to scalar reward values, which serve as proxy signals for alignment with
human preferences. The model is trained using pairwise comparison data spanning a wide range
of tasks—including helpfulness, harmlessness, factuality, and reasoning—through a Bradley-Terry
style objective that encourages higher scores for preferred responses. This formulation enables the
reward model to capture nuanced quality differences across candidate outputs. To support more stable
and informed policy updates, we further incorporated entropy-based regularization to evaluate and
balance the exploration-exploitation dynamics of the fine-tuned policies. This combined approach
ensures that the optimization process not only aligns outputs with human values but also maintains
diversity and adaptability in model behavior.

B.2.3 Prompt Datasets

For the large language model fine-tuning, we have used the RLHFlow/test_generation_2k dataset [9],
containing 2,000 diverse prompts compiled from high-quality instruction-following datasets, and we
randomly choose 10% as test prompts. This diverse prompt set allowed comprehensive evaluation
across multiple dimensions, including factual accuracy, reasoning capabilities, and response quality.
Specifically, the prompts were drawn from a combination of several representative and complementary
sources: UltraFeedback [5]], Capybara [6], Ultralnteract [43], and OpenOrca [20].

* UltraFeedback provides high-quality single-turn instruction-response pairs with rich feed-
back annotations generated by GPT-4, including multi-dimensional numerical scores (e.g.,
helpfulness, correctness, conciseness) and textual critiques. These annotations support
fine-grained evaluation and reward modeling.

» Capybara contributes multi-turn dialogues generated through the Amplify-Instruct pipeline,
which enriches single-turn seed prompts into deep, logically consistent conversations. It
emphasizes diverse topics, natural phrasing, and contextual reasoning, making it valuable
for evaluating sustained dialogue coherence.

» Ultralnteract focuses on complex tasks involving step-by-step reasoning, such as math,
coding, and logic problems. Each example includes multi-step trajectories with intermediate
model outputs, environment feedback, and correctness signals, enabling assessment of
models’ planning and iterative refinement abilities.

* OpenOreca offers a large-scale collection of instruction-response pairs distilled from GPT-4
and GPT-3.5 using the FLAN dataset collection. Its responses often include chain-of-thought
style rationales, making it a useful benchmark for evaluating models’ reasoning depth and
informativeness.

By combining prompts from these datasets, the test set enables comprehensive evaluation of a model’s
capabilities across a wide range of real-world tasks and dialogue scenarios, from single-turn factual
queries to multi-turn, multi-step reasoning challenges.

B.3 Computation Resources

All experiments were conducted on NVIDIA A6000 (48GB) GPUs. For SD3 fine-tuning tasks [12],
we employed parameter-efficient LoRA [17] adaptation to reduce memory requirements and training
time, while still achieving excellent results. In contrast, for the relatively smaller Qwen2-0.5B [40]]
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and Qwen3-0.6B [41] language models, we performed direct full-parameter fine-tuning without
LoRA.

Our experimental setup utilized publicly available open-source reward/evaluation models and datasets
across all domains, ensuring reproducibility and alignment with established benchmarks. The
computation requirements varied significantly between tasks: LLM fine-tuning experiments were
relatively efficient, typically completing within 12-24 hours per model configuration, while SD3
fine-tuning tasks were more computationally intensive, requiring approximately 2-3 days.
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C Algorithm Pseudocode

We first detail our algorithm pseudocode in Algorithm I|for fine-tuning flow matching models (we
use linear interpolation path as an example). Noting that, we can sample from current learned
velocity field vy (x4, t, ) via solving: x; = zo + fol vo(xt, t, c)dt, wherein xog ~ p(zo) and p(xo) is
a standard gaussian distribution [21}[12]]. As for our method for fine-tuning LLM models, we can
simply add an extra advantage-weighted KL divergence into the original GRPO training loss as Equ.
([, therefore it is easy to be implemented.

Algorithm 1 Adaptive Divergence Regularized Policy Optimization (ADRPO) for SD3 Fine-tuning

Require: Pre-trained flow matching model 7.t (SD3), baseline regularization coefficient 3y, advan-
tage clipping range [Amin, Amax), learning rate n
1: Initialize fine-tuned policy mj) with pre-trained parameters (or LoRA adaptation)
2: for training iterationn = 1,2, ... do

3: Sample a batch of text prompts {c;}2 | ~ p(c)

4: Sample target states {24 }2, ~ 7~ (z|¢;) from current policy > Online sampling strategy
5: for each prompt c; and its generated image z* do
6: Compute reward R(z, c;) using CLIP Score
7: Sample intermediate time step ¢; ~ 4/(0,1)
8: Compute intermediate state z¢ = (1 — t;)x{ + t;2} > Straight-line interpolation
9: Compute target velocity ul = 2 —
10: end for
11: Compute baseline value V(¢;) = & Zfil R(z%, ¢;) for each context

12:  Compute advantage A(z%,¢;) = R(z%, ¢;) — V(e;)

13: Apply advantage clipping: Acipped(2%, ¢;) = clip(A(z}, ¢;), Amin, Amax)

14: Compute adaptive regularization coefficient B« = By — Actipped (@4, ¢i)

15: Update model parameters using the ADRPO loss L£aprpo-pm(#) from Equation (6):
16: 0« 60— TIVOEADRPO—FM(G)

17: end for

18: return Fine-tuned policy 7y
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792 D.1 Flow Matching Model Fine-tuning Tasks

793 D.1.1 Additional Qualitative Results
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Figure 5: Additional Qualitative Comparison with Large FM Generative Models. Our ADRPO
demonstrates superior performance in s , Counting, Text Rendering and
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Figure 6: Additional Qualitative Comparison with Other RL Fine-tuning Methods. Our ADRPO
demonstrates superior performance in Text Rendering, s , Counting and
Position.
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794 D.1.2 Learning Curves

Reward vs Diversity Trade-off
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Figure 7: Learning Curves of Fine-tuning SD3. Left: Complete policy optimization trajectories across
three different methods throughout training using a same seed (for fairness). Transparency indicates
progression from early (transparent) stages through convergent (solid) to final (star) checkpoints,
with each point representing a learned policy from different iterations. Center and right: Learning
curves of RL agents.
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D.2 LLM Fine-tuning Tasks

D.2.1 Learning Curves

Exploration vs Exploitation Trade-off
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Figure 8: Learning Curves of LLM Fine-tuning Experiments (100 iterations, no early stop).
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797 D.2.2 Reward and KL Divergence Trade-off
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Figure 9: Reward Divergence Trade-off of LLM Fine-tuning Experiments (100 iterations, no early
stop).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly articulate the key contributions, specifi-
cally: (1) introducing ADRPO as a general framework for adjusting regularization based
on advantage estimates in Sec. |3| (2) demonstrating superior text-to-image alignment with
ADRPO enabling a 2B parameter model to outperform larger models and other RL methods
(See Fig. [T)and Fig. [2), (3) showing emergent exploration behavior in LLMs (See Fig. @),
and (4) establishing cross-domain applicability across flow matching models and LLMs.
These claims are fully supported by the experimental results in Sec. [ and additional results
in App.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a detailed limitations section in App. [A.1] that discusses com-
putational overhead, scaling to larger models, and potential improvements to advantage
estimation techniques. We acknowledge that our experiments were primarily conducted
on models of moderate scale (SD3-2B [12], Qwen2-0.5B [40], and Qwen3-0.6B [41]]) due
to computational constraints and discuss how the approach might behave on much larger
foundation models.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper focuses on an empirical approach to reinforcement learning fine-
tuning rather than providing formal theoretical results or proofs. We present algorithm
formulations (see Equs. @), (6)., and (7)) and empirical validations of the proposed ADRPO
method through extensive experiments in Sec.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive details on the experimental setup in Sec. and
App. [B] including model architectures, datasets, reward models, and evaluation metrics. Our
algorithm pseudocode in App. [C|(Algorithm|T)) further enhances reproducibility by detailing
the implementation of ADRPO for SD3 fine-tuning. We also discuss LLM/FM fine-tuning

details in App. [Cland App.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available models (SD3 [12]], Qwen2 [40], Qwen3 [41]])
and datasets (DrawBench [28]], RLHFlow [8]]) as noted in App. Our implementation
details and algorithm pseudocode in App. [Cland App. [B]provide sufficient information for
reproduction, and we plan to release our codes upon publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify training and test details in Section[4.I]and Appendix [B] including
prompt datasets (DrawBench for text-to-image, RLHFlow for LLMs), hyperparameters, and
optimization approaches (LoRA adaptation for SD3, full parameter fine-tuning for Qwen).

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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959 * The full details can be provided either with the code, in appendix, or as supplemental
960 material.

961 7. Experiment statistical significance

962 Question: Does the paper report error bars suitably and correctly defined or other appropriate
963 information about the statistical significance of the experiments?

964 Answer: [Yes]

965 Justification: Table [1|reports standard errors estimated over 3 runs with different random
966 seeds for all evaluation metrics. This is clearly stated in the table caption ("We report
967 standard errors estimated over 3 runs of different random seeds") and the results consistently
968 show ADRPO outperforming other methods beyond statistical error margins.

969 Guidelines:

970 * The answer NA means that the paper does not include experiments.

971 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
972 dence intervals, or statistical significance tests, at least for the experiments that support
973 the main claims of the paper.

974 * The factors of variability that the error bars are capturing should be clearly stated (for
975 example, train/test split, initialization, random drawing of some parameter, or overall
976 run with given experimental conditions).

977 * The method for calculating the error bars should be explained (closed form formula,
978 call to a library function, bootstrap, etc.)

979 * The assumptions made should be given (e.g., Normally distributed errors).

980 ¢ It should be clear whether the error bar is the standard deviation or the standard error
981 of the mean.

982 * It is OK to report 1-sigma error bars, but one should state it. The authors should
983 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
984 of Normality of errors is not verified.

985 * For asymmetric distributions, the authors should be careful not to show in tables or
986 figures symmetric error bars that would yield results that are out of range (e.g. negative
987 error rates).

988 * If error bars are reported in tables or plots, The authors should explain in the text how
989 they were calculated and reference the corresponding figures or tables in the text.

990 8. Experiments compute resources

991 Question: For each experiment, does the paper provide sufficient information on the com-
992 puter resources (type of compute workers, memory, time of execution) needed to reproduce
993 the experiments?

994 Answer: [Yes]

995 Justification: In App. [B| we specify that all experiments were conducted on NVIDIA A6000
996 (48GB) GPUs, with LoRA [[17] used for SD3 fine-tuning to reduce memory requirements.
997 We also note the approximate time requirements: LLM experiments completed within 12-24
998 hours per model configuration, while SD3 fine-tuning required 2-3 days.

999 Guidelines:

1000 * The answer NA means that the paper does not include experiments.

1001  The paper should indicate the type of compute workers CPU or GPU, internal cluster,
1002 or cloud provider, including relevant memory and storage.

1003 * The paper should provide the amount of compute required for each of the individual
1004 experimental runs as well as estimate the total compute.

1005  The paper should disclose whether the full research project required more compute
1006 than the experiments reported in the paper (e.g., preliminary or failed experiments that
1007 didn’t make it into the paper).

1008 9. Code of ethics

1009 Question: Does the research conducted in the paper conform, in every respect, with the
1010 NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics. We have ensured
transparency in our methodology, cited all sources appropriately in our bibliography, and
discussed both benefits and potential limitations of our approach in App. [Aland App.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In App. [A.2] we discuss both positive impacts (parameter efficiency leading to
reduced computational resources and costs, making advanced generative capabilities more
accessible) and potential implications of our work. We highlight that "our finding that a
relatively small model (2B parameters) can outperform substantially larger models (4.8B
and 12B parameters) when fine-tuned with ADRPO has important implications for personal
access to high-quality generative AL"

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper doesn’t explicitly release models or datasets that pose high risk for
misuse. We focus on improving fine-tuning methodology for existing models (Sec. [3) rather
than releasing new assets that would require specific safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite the original sources for all models and datasets used, including

SD3 [[12]], Qwen2 [40], Qwen3 [41]], DrawBench [28]], SANA-1.5 [38]], FLUX.1-Dev [42],
and RLHFlow [8] as referenced throughout our paper (see Sections|[I}[2] @ and App. [B).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[NA]

Justification: Our paper doesn’t introduce new datasets, code packages, or model releases; it
presents a new methodology (ADRPO) for fine-tuning existing models.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: Our research doesn’t involve crowdsourcing or direct human subjects. We use
existing public datasets and evaluation metrics rather than collecting new human preference
data or conducting human evaluations.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper doesn’t involve research with human subjects that would require
IRB approval or equivalent.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: While we fine-tune LLMs (Qwen2, Qwen3), LLMs are not used as components
in our research methodology itself; they are the subject of study rather than tools used to
develop the core method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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