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Abstract

Balancing exploration and exploitation during reinforcement learning fine-tuning of1

generative models presents a critical challenge, as existing approaches rely on fixed2

divergence regularization that creates an inherent dilemma: strong regularization3

preserves model capabilities but limits reward optimization, while weak regulariza-4

tion enables greater alignment but risks instability or reward hacking. We introduce5

Adaptive Divergence Regularized Policy Optimization (ADRPO), which auto-6

matically adjusts regularization strength based on advantage estimates—reducing7

regularization for high-value samples while applying stronger regularization to8

poor samples, enabling policies to navigate between exploration and aggressive9

exploitation according to data quality. Our implementation with Wasserstein-210

regularization for flow matching generative models achieves remarkable results on11

text-to-image generation, achieving better semantics alignment and diversity than12

offline methods like DPO and online methods with fixed regularization like ORW-13

CFM-W2. ADRPO also enables 2B parameter SD3 model to surpass much larger14

models with 4.8B and 12B parameters in attribute binding, semantic consistency,15

artistic style transfer, and compositional control while maintaining generation diver-16

sity. ADRPO can also generalize to KL-regularized LLM fine-tuning, enhancing17

existing online RL methods like GRPO while requiring no additional networks or18

complex architectural changes. In LLM fine-tuning tasks, we observe that ADRPO19

even demonstrates an emergent ability to escape local optima by actively increasing20

exploration to discover superior policies, thus offering an effective, plug-and-play21

solution to the exploration-exploitation challenge in generative model fine-tuning.22

1 Introduction23

Reinforcement learning fine-tuning has emerged as a powerful paradigm for aligning generative24

models with human preferences, driving remarkable improvements in capabilities from text gener-25

ation to image synthesis [22, 4, 34]. At the core of modern RLHF approaches lies a fundamental26

challenge: effectively balancing divergence regularization against reward maximization during policy27

optimization. This balance is critical as it determines whether models retain the beneficial properties28

of their pre-trained foundation while adapting to better satisfy human preferences [26, 44, 2].29

The current standard practice employs divergence regularization with fixed coefficients to constrain30

policy updates - typically using Kullback-Leibler (KL) [31, 23] or Wasserstein-2 (W2) divergences31

[1, 13]. However, this approach creates an inherent dilemma that limits performance: strong regu-32

larization preserves model capabilities but hampers reward optimization, while weak regularization33

enables greater reward optimization but risks catastrophic forgetting, mode collapse, or reward34

hacking [18, 32, 33]. This trade-off is particularly pronounced in generative models where preserving35

diversity while improving quality represents a critical balance [3, 14]. Existing approaches like PPO36
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[30], GRPO [31], and DPO [26, 37] employ fixed regularization coefficients that treat all data points37

equally, regardless of whether the policy should prioritize exploitation (when rewards are reliable) or38

exploration (when falling into suboptimal solutions). This one-size-fits-all approach fails to adapt to39

the varying exploration needs across the complex landscapes of generative model policy optimization.40

To address these limitations, we propose Adaptive Divergence Regularized Policy Optimization41

(ADRPO), a novel framework that dynamically adjusts regularization strength using advantage42

estimates [29, 35]. ADRPO employs advantage signals to fine-tune the exploration-exploitation trade-43

off: high-advantage samples reduce regularization for aggressive optimization, while low-advantage44

samples increase it for stability. This sample-level adaptation integrates seamlessly into training,45

providing an efficient and automated approach. By aligning regularization with sample quality,46

ADRPO overcomes the shortcomings of prior methods, delivering superior alignment and generative47

performance across diverse tasks, as demonstrated in our experiments with text-to-image alignment48

and language model fine-tuning. In summary, our approach makes several important contributions:49

1. General RL Framework with Adaptive Divergence Regularization. We introduce50

ADRPO as a general-purpose framework that dynamically adjusts regularization based on51

advantage estimates, integrating with existing RL fine-tuning methods without architec-52

tural changes. Our proposed methods address the exploration-exploitation dilemma while53

preventing reward hacking and model collapse.54

2. Superior Text-to-Image Alignment with Smaller Model. We first propose a novel online55

RL method based on ADRPO, combining advantage-based policy optimization and adaptive56

W2 regularization for fine-tuning flow matching models. Our experiments of fine-tuning57

SD3 demonstrate ADRPO’s dominant Pareto frontier in the reward-diversity trade-off and58

reward-divergence trade-off compared to DPO [26] and fixed-regularization approaches [13]59

(See Figs. 2 and 3). Notably, our 2B parameter model outperforms larger 4.8B [38] and60

12B [42] parameter models across attribute binding, compositional control, and semantic61

consistency (See Figs. 1 and Tab. 1).62

3. Emergent Exploration in LLMs. We also apply our ADRPO to improve GRPO [31]63

for online fine-tuning of LLMs (See Figs. 4). ADRPO not only improves alignment but64

exhibits an emergent ability to escape local optima by actively increasing exploration when65

needed—a capability absent in fixed-regularization methods like GRPO.66

4. Cross-Domain Applicability. ADRPO provides a unified solution for both continuous67

(flow matching with W2 regularization) and discrete (LLMs with KL divergence) generative68

paradigms, offering immediate practical benefits with minimal computational overhead.69

2 Related Work70

RL Fine-tuning for LLMs. Reinforcement learning has become the dominant approach for aligning71

large language models with human preferences. Pioneering work by [4] established the RLHF72

framework, which was later scaled by [22] to create models that better follow human instructions.73

The algorithmic landscape has evolved from PPO [30] to more efficient alternatives like GRPO [31]74

and offline approaches like DPO [26]. These methods have significantly improved the reasoning75

capabilities of models like DeepSeek-R1 [15] and improved their instruction-following abilities.76

Despite their success, these approaches typically rely on fixed regularization parameters that treat77

all samples equally, regardless of whether they represent promising directions for optimization or78

uncertainty-laden regions requiring more conservative updates (See Fig. 4).79

RL Fine-tuning for Flow Matching Models. While RL fine-tuning is established for language80

models, its application to flow matching (FM) models [21] presents unique exploration-exploitation81

trade-off challenges due to their continuous-time nature and ODE-based sampling. Recent approaches82

like Online Reward-Weighted Fine-Tuning with Wasserstein regularization [13] and offline methods83

like diffusion-DPO [37] have made progress, but remain limited by fixed regularization schemes that84

cannot adapt to sample-specific characteristics. This fundamental limitation restricts their ability to85

optimally balance the critical exploration-exploitation trade-off necessary for effective fine-tuning of86

state-of-the-art image generation models like SD3 [12] (See Tab. 1 and Figs. 2).87

Divergence Regularization in RL Fine-tuning. Divergence regularization plays a crucial role in RL88

fine-tuning by preventing the policy from deviating too far from the initial model, thus preserving89
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desirable properties while allowing for improvement. For language models, KL divergence serves90

as the standard metric in methods like PPO [30], GRPO [31], and DPO [26], while flow models91

benefit from Wasserstein distances [13] that better handle continuous distributions. Despite their92

importance, existing approaches typically employ fixed regularization coefficients that fail to handle93

the varying significance of regularization across different samples and different learning stages. This94

limitation can lead to suboptimal trade-offs between preserving model capabilities and maximizing95

rewards (e.g., GRPO in Fig. 4), risking model collapse [32, 16] or insufficient improvement. Our96

work addresses this gap through adaptive regularization based on advantage estimates, providing a97

novel approach to dynamically balancing exploration and exploitation during training.98

3 Method99

3.1 Problem Formulation100

In this paper, we address the challenges of fine-tuning pre-trained generative models through online101

RL to improve their alignment with human preferences [4, 23]. Given a pre-trained reference policy102

πref and its fine-tuned counterpart πθ parameterized by θ, our objective is to maximize the expected103

user-defined reward Ex∼πθ
[R(x, c)], where R(x, c) quantifies human preference for generation x104

conditioned on context c ∼ p(c) (e.g., CLIP Score [24] for T2I tasks). This context may be a text105

prompt in LLMs [40, 41, 10] or an image description in text-to-image (T2I) models [12, 38, 42]. The106

standard approach in RL fine-tuning formulates this as a constrained optimization problem:107

J(θ) = Ex∼πθ,c∼p(c)[R(x, c)]− β ·D(πθ, πref) (1)

Here, p(c) is the sample distribution of prompts (e.g., uniform sampling in our paper), D(πθ, πref)108

represents a divergence measure between the fine-tuned and reference policies—typically Kullback-109

Leibler divergence (KL) for discrete generative models [30, 31, 26] or Wasserstein distance for110

continuous distributions [36, 1, 13]. The coefficient β controls the trade-off between reward opti-111

mization and preservation of the pre-trained model’s capabilities (e.g., diversity).112

3.2 Adaptive Divergence Regularized Policy Optimization113

Recent approaches to online RL fine-tuning of generative models have explored different divergence114

measures, including W2 regularization in flow matching models [13] and KL divergence in LLMs115

[31, 23]. However, these methods still rely on fixed regularization schemes that treat all samples116

equally, regardless of their potential for reward improvement or risk of degradation. This fundamental117

challenge of adaptive regularization—dynamically balancing exploration and exploitation (See Figs.118

3 and 4) at the individual sample level—remains largely unaddressed in the literature.119

3.2.1 Conventional RL Fine-tuning Approaches120

The conventional RL objective in Equation (1) can be rewritten as a combination of two loss terms:121

LRLHF(θ) = LRL(θ) + β · LD(θ) (2)

where LRL(θ) is the policy optimization term such as policy gradient [30] or reward-weighting122

[13] and LD(θ) = D(πθ, πref) is the divergence regularization term, such as KL divergence in123

LLMs [31] or W2 divergence in flow matching models [13]. In practice, this formulation has been124

instantiated in various ways. For example, Group Relative Policy Optimization (GRPO) [31] employs125

a KL-regularized policy gradient objective for LLMs:126

LGRPO(θ) = LPG(θ) + β ·DKL(πθ∥πref) (3)

where LPG(θ) represents a clipped policy gradient loss based on group-level advantage estimation.127

Similarly, ORW-CFM-W2 [13] applies a W2 regularization term for flow matching models:128

LORW-CFM-W2(θ) = LORW + β · Ec,t,xt
[|vθ(xt, t, c)− vref(xt, t, c)|2]

where LORW = Ec,x1,t,xt
[ω(x1, c) ∗ |vθ(xt, t, c)− ut|2] is the reward weighted loss and vθ and vref129

are the velocity fields of the fine-tuned and reference policies, respectively.130

Critically, in all these approaches, the regularization strength β remains constant across all samples131

and training steps, failing to adapt to the varying quality of generated samples.132
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3.2.2 Our Approach: Advantage-Based Adaptive Regularization133

We introduce Adaptive Divergence Regularized Policy Optimization (ADRPO), a principled frame-134

work that dynamically adjusts regularization strength based on the estimated advantages of individual135

samples. The key insight in ADRPO is that the regularization coefficient should not be static, but136

should vary inversely with the sample’s estimated advantage. Formally, we propose:137

LADRPO(θ) = LRL(θ) + (β0 −A) · LD(θ) (4)

where A is an advantage estimate for the current sample and β0 is a baseline regularization coefficient.138

This formulation creates an adaptive regularization coefficient βtot = β0 − A that adapts based on139

the quality of each sample. This adaptive mechanism creates a natural balance: 1) Exploitation:140

in regions where the policy generates high-quality samples (high advantage), ADRPO allows for141

efficient exploitation by reducing divergence penalties; 2) Exploration: in uncertain or low-quality142

regions (low advantage), it enforces stronger regularization to maintain stability and preserve the143

model’s original capabilities (See Figs. 3 and 4).144

Based on Equ. (4), our ADRPO can be seamlessly integrated with various existing RL fine-tuning145

methods. For instance, when applied to GRPO for large language models (LLMs), the objective146

becomes LADRPO-GRPO(θ) = LPG(θ) + (β0 −AGRPO) ·DKL(πθ∥πref), where AGRPO is the advantage147

estimate from GRPO’s group-based estimation procedure [31, 15].148

3.3 ADRPO for Flow Matching Generative Models149

We now demonstrate how our ADRPO framework can be effectively applied to fine-tuning flow150

matching models [21, 36], particularly focusing on text-to-image generation models like SD3 [12].151

3.3.1 Flow Matching Preliminaries152

Flow matching (FM) models define a continuous-time transformation that maps a simple prior153

distribution p(x0) (e.g., Gaussian) to a complex target distribution via a probability flow pt. An154

FM model learns a velocity field vθ(xt, t, c) that approximates the true velocity field ut(xt|c).155

However, since ut(xt|c) is often intractable [21], Conditional Flow Matching (CFM) [36] proposes156

an equivalent yet tractable objective by conditioning the flow on target samples x1 while learning a157

conditional target velocity field (e.g., ut(xt|x1, c) = x1 − x0 for linear interpolation path [21]):158

LCFM(θ) = Ec∼p(c),t∼U(0,1),x1∼pdata(x|c),xt∼pt(xt|x1,c)[|vθ(xt, t, c)− ut(xt|x1, c)|2] (5)

Given a pre-trained reference model like SD3 [12], flow matching fine-tuning aims to align generations159

with human preferences while preserving generative diversity. Traditional approaches, including160

supervised fine-tuning and offline RL methods like DPO [26, 37], sample target states x1 ∼ pdata(x|c)161

from a fixed human-curated dataset—a stable but limiting approach that restricts exploration of162

potentially better policy regions (See Figs. 2 and 3 ). In contrast, our proposed ADRPO framework163

embraces an online RL paradigm, sampling target states from the fine-tuned policy itself: x1 ∼164

pn−1
θ (x|c), with pn−1

θ representing the policy at the previous iteration. This online sampling strategy165

enables the model to continuously improve upon its own generations and explore the policy space166

more effectively but is prone to collapse [13], while our adaptive regularization mechanism specifically167

addresses the inherent instability and exploration-exploitation dilemma in online RL fine-tuning.168

3.3.2 ADRPO with Wasserstein Regularization169

A key observation across RL fine-tuning methods [31, 13, 23] is that effective policy optimiza-170

tion requires differentially weighting samples based on quality (e.g., upweighting probabilities171

of high-reward samples while downweighting poor ones). While traditional RL methods scale172

updates by advantage estimates [30, 29], this principle—strengthening high-quality trajectories173

while weakening low-quality ones based on advantage estimates [30, 35]—hasn’t been fully lever-174

aged in flow matching fine-tuning. Current approaches like reward-weighted flow matching [13]175

can only down-weight poor samples without actively discouraging them, significantly reducing176

efficiency in high-dimensional spaces (e.g., image generation) where undesirable regions vastly177
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outnumber desirable ones. We address this limitation by introducing advantage-based policy op-178

timization for flow matching models, creating bidirectional learning signals through advantage179

estimates rather than non-negative reward weights to both enhance high-quality generations and180

actively suppress poor ones. Specifically, we propose an advantage-weighted flow matching objective:181

LRL(θ) = Ec∼p(c),t∼U(0,1),x1∼pn−1
θ ,xt∼pt(xt|x1,c)

[A(x1, c) · |vθ(xt, t, c)− ut|2], where pn−1
θ is the182

current fine-tuned policy and A(x1, c) represents the estimated advantage for sample x1 given context183

c, vθ(xt, t, c) is the learned velocity field, xt = (1 − t)x0 + tx1, and ut = x1 − x0 is the target184

velocity for the straight-line interpolation in FM models [21].185

This formulation creates a fundamentally different learning dynamic compared to reward-weighting186

approaches. For samples with positive advantage (A > 0), the objective encourages matching the187

target velocity field, strengthening high-quality generations. Conversely, for samples with negative188

advantage (A < 0), the sign inversion reverses the gradient direction, actively pushing the model189

away from poor generations rather than merely down-weighting them. Meanwhile, average-quality190

samples (where A ≈ 0) contribute minimally to the gradient, naturally focusing computational191

resources on the most informative examples and facilitating efficient convergence (See Fig. 3).192

Advantage Estimation. For FM models, we compute the advantage as the difference between the193

reward of a sample and the expected reward under the current policy as A(x1, c) = R(x1, c)− V (c),194

where R(x1, c) is the human preference reward for the generated sample x1 given context c, and195

V (c) is a baseline value function estimated as the average reward over a batch of samples for the196

same context, which is computationally efficient.197

Adaptive Regularization. Based on Equ. (4), we further propose to dynamically adjust the regular-198

ization strength based on the same advantage estimates. This creates a unified framework where the199

exploration-exploitation balance is automatically modulated at the individual sample level:200

LADRPO-FM(θ) = Ec∼p(c),t∼U(0,1),x1∼pn−1
θ ,xt∼pt(xt|x1,c)

[A(x1, c) · |vθ(xt, t, c)− ut|2]

+(β0 −A(x1, c)) · Ec,t,xt
[|vθ(xt, t, c)− vref(xt, t, c)|2]

(6)

The adaptive regularization coefficient βtot = β0 −A(x1, c) establishes a dynamic adaptation mecha-201

nism responsive to sample quality. For high-advantage samples (A > 0), regularization decreases202

proportionally. For low-advantage samples (A < 0), regularization strengthens proportionally,203

constraining updates to maintain proximity to the reference model. This bidirectional adaptation204

fundamentally transforms the exploration-exploitation landscape (Figure 3), replacing fixed regular-205

ization with sample-wise W2 regularization that continuously adapt to the evolving policies.206

Stabilization, Efficient Learning. To ensure stable training with our adaptive advantage-based207

approach, we use advantage clipping that constrains advantages to a reasonable range [Amin, Amax]208

as Aclipped(x1, c) = clip(A(x1, c), Amin, Amax). We also use LoRA [17] for efficient learning.209

3.4 ADRPO for Fine-tuning LLMs210

Applying our ADRPO framework to Large Language Models (LLMs) can address the limitation211

of static regularization in conventional online RL methods by dynamically controlling the penalty212

for deviating from the pre-trained policy based on sample advantage. High-advantage responses213

indicate promising directions warranting reduced regularization to encourage policy optimization,214

while low-advantage responses signal areas to avoid, requiring increased regularization to maintain215

proximity to the reliable pre-trained model and prevent undesirable outputs or instability. We integrate216

this principle with GRPO [31], modifying its objective by making the KL divergence regularization217

strength dependent on the advantage estimate (AGRPO) for each sample. The objective becomes:218

LADRPO-GRPO(θ) = LPG(θ) + (β0 −AGRPO) ·DKL (πθ∥πref) (7)

Here, LPG(θ) is the clipped policy gradient term [31] (i.e.,−min(A∗ratio, A∗clip(ratio, 1−ϵ, 1+ϵ))219

and ratio = πθ

πθold
), DKL is the KL divergence, and β0 is a baseline regularization. The term220

(β0 −AGRPO ) acts as an adaptive coefficient, decreasing for good samples (AGRPO > 0) to promote221

exploitation and increasing for poor samples (AGRPO < 0) to enforce conservative exploration,222

allowing ADRPO-GRPO to achieve a better exploration-exploitation trade-off (See Fig. 4).223
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Table 1: Comparison of text-to-image generation methods across different evaluation metrics. Best
scores are highlighted in blue , second-best in green . We report standard errors estimated over 3
random seeds. ClipDiversity measures the mean pairwise distance of CLIP embeddings [24, 13].

Method Task Metrics Image Quality Human Preference
ClipScore↑ [24] ClipDiversity↑ [24] Aesthetic↑ [39] BLIPScore↑ [11] ImageReward↑ [39] PicScore↑ [19]

Base Model

SD3 (2B) [12] 29.27±0.42 5.08±0.52 5.53±0.09 0.501±0.007 0.97±0.13 20.81±0.09

Other Flow Matching Models

FLUX.1-Dev (12B) [42] 31.72±0.48 4.29±0.42 5.95±0.05 0.492±0.004 1.11±0.10 21.83±0.11
SANA-1.5 (4.8B) [38] 32.18±0.36 4.31±0.50 5.89±0.12 0.526±0.006 1.45±0.08 21.85±0.15

SD3 Fine-tuning Methods

SD3+RAFT [8] 29.35±0.27 1.85±0.19 4.54±0.04 0.512±0.001 0.22±0.08 19.21±0.02
SD3+DPO [37] 31.30±0.52 4.78±0.46 5.82±0.05 0.509±0.005 1.48±0.10 21.31±0.10
SD3+ORW-CFM-W2 [13] 31.42±0.39 3.86±0.37 5.29±0.05 0.542±0.006 1.22±0.10 20.97±0.11

SD3+ADRPO (Ours) 32.97±0.46 5.13±0.47 6.27±0.06 0.567±0.004 1.61±0.05 22.78±0.15

4 Experiment224

4.1 Experimental Setup225

For our experiments, we evaluated ADRPO across two distinct domains: fine-tuning flow matching226

model and LLMs. Fine-tuning FM Model. We implemented ADRPO on SD3 (2B parameters) using227

a diverse range of prompts from DrawBench [28] that test various generative capabilities including228

color attribute binding, compositional reasoning, object counting, spatial relationships, and text229

rendering. We also incorporated complex prompts from RAFT [8] for artistic style transfer tasks (as230

shown in Figure 1). Our method employed the advantage-based ADRPO loss from Equation (6) with231

β0 = 1 and Amax = 1, Amin = −1 for fine-tuning SD3 models while using CLIP score as rewards232

[24]. We conducted comprehensive comparisons against both offline methods like DPO [37] and on-233

line approaches with fixed regularization such as ORW-CFM-W2 [13]. Additionally, we benchmarked234

against substantially larger models including FLUX.1 Dev (12B) [42] and SANA-1.5 (4.8B) [38]235

to evaluate parameter efficiency. Fine-tuning LLMs: We fine-tuned Qwen2 [40] and Qwen3 [41]236

models using RM-Gemma-2B [27, 8] as the reward model on RLHFlow/test_generation_2k prompt237

dataset [8] (i.e., a mixture of UltraFeedback [5], Capybara [6], UltraInteract [43] and OpenOrca [20]).238

ADRPO was integrated with GRPO using KL-divergence regularization as described in Equation239

(7) with β0 = 0.04, Amin = −0.04, Amax = 0.04, and compared against standard GRPO with fixed240

regularization (β = 0.04 [31]) to demonstrate our superior exploration-exploitation balance. Both241

experimental tracks employed advantage clipping techniques to ensure training stability. We chose242

β0 equal to β in fixed regularization methods for fairness. See App. B and C for more details.243

4.2 Main Results244

Table 1 presents a comprehensive evaluation of text-to-image generation methods, demonstrating245

that our proposed ADRPO establishes a superior Pareto frontier in all metrics and achieves the246

best reward-diversity trade-off. Unlike competing approaches such as DPO and ORW-CFM-W2247

that make significant compromises—improving semantic alignment at the cost of diversity or vice248

versa—ADRPO achieves state-of-the-art performance in both dimensions simultaneously through249

its dynamic regularization mechanism in Equ. (6). Our adaptive approach intelligently modulates250

regularization strength based on sample-specific advantage estimates, enabling aggressive exploitation251

in high-reward regions while maintaining exploration elsewhere (See Figures 3 and 4). Perhaps252

most remarkably, our method enables a relatively modest 2B parameter SD3 model to outperform253

substantially larger models including FLUX.1-Dev (12B) [42] and SANA-1.5 (4.8B) [38] across all254

evaluation metrics, particularly in human preferences. This quantitative superiority is visually evident255

in our qualitative results in Figures 1 and 2 where ADRPO-generated images demonstrate exceptional256

attribute binding, spatial understanding, text rendering, and artistic style transfer capabilities that257

even larger models struggle to match. Together, these findings suggest that adaptive regularization258

offers a more efficient path to performance improvement than simply scaling model parameters.259
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4.3 Qualitative Analysis260

SD3
(2B)

SD3+
ADRPO

(2B,Ours)

Van Gogh style 
astronaut

Edward Hopper 
style vase

Jacques-Louis David style 
big ben

SANA-1.5
(4.8B)

FLUX.1 
Dev
(12B)

A green apple and a
black backpack.

Figure 1: Qualitative Comparison with Large FM Generative Models. Our ADRPO demonstrates
superior performance in Artistic Style Rendering, Attribute Binding, Coloring and Counting.

Comparison with SOTA Large FM Models. Figure 1 shows our ADRPO fine-tuned SD3 model261

(2B parameters) significantly outperforming much larger models like FLUX.1 Dev (12B) and SANA-262

1.5 (4.8B). This challenges the conventional wisdom that parameter scaling is the primary path263

to performance improvements. Our method excels in areas where larger models struggle: for264

artistic style transfer ("Jacques-Louis David style big ben"), complex compositions ("Van Gogh style265

astronaut"), and attribute binding ("green apple and black backpack"), ADRPO maintains both style266

accuracy and compositional integrity while larger models introduce visual artifacts despite their 2-6×267

parameter counts. These results demonstrate that adaptive regularization can enable smaller models268

to match or exceed much larger models’ capabilities. See App. D for more results.269

SD3

SD3+
ADRPO
(Ours)

A zebra to the right 
of a fire hydrant.

Edward Hopper 
style vase

A storefront with 'Diffusion' 
written on it.

SD3+
ORW-

CFM-W2

SD3+
DPO

A black colored 
banana

Figure 2: Qualitative Comparison with Other RL Fine-tuning Methods. Our ADRPO demon-
strates superior performance in Artistic Style Rendering, Text Rendering, Attribute Binding, Coloring,
Counting and Position. We use a similar DPO method as described in [7] to fine-tune SD3 models.

Comparison with other RL Fine-tuning Methods. Figure 2 demonstrates ADRPO’s clear su-270

periority over existing reinforcement learning fine-tuning approaches. While DPO [37] preserves271

diversity at the cost of semantic alignment and ORW-CFM-W2 [13] improves alignment but sacrifices272

diversity, ADRPO achieves excellence in both dimensions through advantage-guided regularization.273
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This is evident across text rendering ("Diffusion" storefront), attribute binding (zebra positioning),274

coloring (black banana), and style transfer tasks, where our method consistently delivers superior275

compositional accuracy. By dynamically modulating regularization strength—increasing constraints276

for uncertain samples while allowing greater divergence for reliable ones—ADRPO effectively277

resolves the exploration-exploitation dilemma that static approaches cannot address.278

4.4 Visualizing Exploration-Exploitation Trade-off in Policy Optimization279
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Figure 3: Reward-Diversity/Divergence Trade-off. Left: policy optimization trajectories (using a
same seed) of different methods throughout training, with transparency indicating progression from
early (transparent) to convergent (solid) to final (star) checkpoints. Each point is a learned policy
from different iterations. Center and right: final reward and diversity/divergence across methods.

Reward Hacking Mitigation. Figs. 3 reveals distinct vulnerability patterns to reward hacking280

across methods. While DPO maintains moderate diversity but plateaus in reward optimization, ORW-281

CFM-W2 aggressively pursues reward optimization but exhibits significant diversity collapse (right282

panel), resulting in template-like generations (See Fig. 2). Our ADRPO, through advantage-guided283

regularization, achieves the highest reward without sacrificing diversity—a combination neither284

competing method attains. This translates to superior generations with precise attribute binding and285

high visual quality while maintaining creative flexibility. See App. D for whole learning curves.286

Exploration-Exploitation Balance and Divergence Control. The trajectory visualization in Figs.287

3 (left) captures each method’s navigation of the exploration-exploitation landscape. The bottom288

plots further illustrate ADRPO’s advantage in maintaining minimal W2 divergence while maximizing289

reward. While DPO makes modest improvements before plateauing and ORW-CFM-W2 follows an290

exploitation path that compromises diversity, ADRPO consistently expands the Pareto frontier. This291

superior balancing act stems from our adaptive mechanism making sample-specific regularization292

decisions, effectively resolving the dilemma that fixed-coefficient methods cannot address.293

4.5 Application to Fine-tuning LLMs294

To demonstrate ADRPO’s versatility beyond FM models, we applied our approach to LLM fine-tuning295

with the Qwen2 [40] and Qwen3 [41] model families using RM-Gemma-2B [8, 9, 27] as the reward296

model, as shown in Figure 4. All methods are evaluated in RLHFlow/test_generation_2k dataset [8].297

Superior Exploration-Exploitation Control. The policy optimization trajectories (left panels) in298

Figure 4 reveal distinct patterns between methods. While GRPO maintains high entropy throughout299

training but struggles to find high-reward regions—showing substantial horizontal movement with300
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Figure 4: Ablation Studies and Exploration-Exploitation Trade-off in Fine-tuning LLMs. Left: policy
optimization trajectories in reward-entropy space for ADRPO and GRPO (i.e., fixed β as [31]) across
Qwen2 (0.5B) [40] (top) and Qwen3 (0.6B) [41] (bottom) models, with transparency indicating
progression from early to final checkpoints. Center and right: Final performance of different methods.

limited vertical improvement—ADRPO implements a strategic exploration pattern that efficiently301

navigates the exploration-exploitation landscape. For Qwen3 (bottom left), ADRPO exhibits a302

remarkable ability to first explore lower entropy regions, then actively increase entropy to escape303

local optima, before converging to a final checkpoint with 5× higher reward than GRPO.304

Preventing Model Collapse. ADRPO demonstrates superior resistance to model collapse during305

extended training. GRPO’s performance tends to plateau or deteriorate as training progresses (also306

see Fig. D.2.1), with later checkpoints (darker red points) often showing lower rewards than earlier307

ones—a common failure mode of fixed-regularization methods. In contrast, ADRPO shows consistent308

improvement throughout training by dynamically adjusting regularization strength based on advantage309

estimates, eliminating the need for careful early stopping to prevent performance regression.310

Cross-Architecture Generalizability. The consistent superior performance across both flow match-311

ing models and different LLM architectures confirms that ADRPO addresses fundamental limitations312

in reinforcement learning fine-tuning. By adapting regularization strength to sample-specific advan-313

tage estimates, our method provides a generalizable solution to the exploration-exploitation dilemma314

that effectively transfers between domains. See App. D for whole learning curves.315

5 Conclusion316

The exploration-exploitation dilemma represents a critical challenge in generative model RL fine-317

tuning that fixed regularization approaches fail to address. To tackle this, we propose Adaptive318

Divergence Regularized Policy Optimization (ADRPO), which dynamically adjusts regularization319

strength based on sample-specific advantage estimates—reducing constraints for high-value samples320

while strengthening them for poor ones. Our experiments demonstrate ADRPO’s effectiveness321

across domains: in text-to-image generation, it outperforms other methods in alignment, quality, and322

diversity, enabling our 2B parameter SD3 model to surpass much larger models (4.8B and 12B) in323

various tasks; in LLM fine-tuning, it exhibits an emergent ability to escape local optima by actively324

increasing exploration. ADRPO establishes a superior Pareto frontier in the reward-diversity trade-off,325

confirming that sample-adaptive regularization offers a plug-and-play solution that generalizes across326

generative domains with minimal computational overhead. See App. A for more discussion.327
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A Discussion543

In reinforcement learning fine-tuning of generative models, the exploration-exploitation trade-off544

represents a critical challenge: too much exploitation leads to reward hacking and diversity collapse,545

while excessive exploration prevents effective alignment. This dilemma is particularly pronounced546

in online RL fine-tuning where models continuously learn from their own generations. Existing547

methods rely on fixed regularization coefficients that treat all samples equally, regardless of their548

reward potential or uncertainty, creating an inherent tension between preserving model capabilities549

and optimizing for reward.550

Key Insight 1: ADRPO solves the fundamental exploration-exploitation dilemma in generative
model fine-tuning through a principled adaptive mechanism where regularization strength
automatically scales with sample-specific advantage estimates.

In this paper, we introduced Adaptive Divergence Regularized Policy Optimization (ADRPO), a551

novel approach that fundamentally reimagines how divergence regularization is applied during gen-552

erative model fine-tuning. Unlike existing approaches that employ fixed regularization coefficients,553

ADRPO dynamically modulates regularization strength based on sample-specific advantage estimates,554

effectively turning the static trade-off parameter into an adaptive function. Through comprehensive555

experimentation, we have demonstrated that this simple yet powerful modification successfully over-556

comes the inherent limitations of fixed-regularization methods across both text-to-image generation557

and language model domains, establishing a new paradigm for reinforcement learning fine-tuning of558

generative models.559

Key Finding 1: ADRPO establishes a dominant Pareto frontier in the reward-diversity trade-
off, achieving state-of-the-art performance in both dimensions simultaneously where previous
methods could only optimize one at the expense of the other (Figure 3).

Our experimental results reveal critical insights about the nature of reinforcement learning fine-560

tuning. The reward-diversity trade-off, long considered an unavoidable compromise in generative561

model alignment, can be effectively navigated through our adaptive regularization framework. As562

shown in Figure 3 (left), DPO preserves moderate diversity but plateaus in reward optimization,563

while ORW-CFM-W2 improves alignment but suffers significant diversity collapse. In contrast,564

ADRPO achieves dominant performance in both dimensions simultaneously (Figure 3, center and565

right panels), establishing a new state-of-the-art that was previously considered unattainable. This is566

achieved through our bidirectional adaptation mechanism, where regularization strength decreases567

for high-advantage samples to enable aggressive optimization while increasing for low-advantage568

samples to maintain stability and diversity.569

Key Finding 2: ADRPO enables remarkable parameter efficiency, allowing a 2B parameter
model to consistently outperform substantially larger models (4.8B and 12B), demonstrating
that optimization strategy can be more consequential than model scale (Table 1).

The parameter efficiency enabled by our approach challenges fundamental assumptions about scaling570

laws in generative AI. As demonstrated in Table 1, our 2B parameter SD3 model fine-tuned with571

ADRPO consistently outperformed substantially larger models including FLUX.1-Dev (12B) and572

SANA-1.5 (4.8B) across all evaluation metrics—from ClipScore to human preference metrics like573

ImageReward and PicScore. This finding suggests that optimization strategy can be more consequen-574

tial than raw parameter count for generative quality, with profound implications for both research575

focus and practical deployment. By enabling smaller models to match or exceed the capabilities of576

models 2-6× their size, ADRPO offers a path to personal access to high-quality generative AI while577

significantly reducing computational and environmental costs. The qualitative results in Figure 1 fur-578

ther support this finding, showing superior attribute binding and style transfer capabilities compared579

to larger models.580

Key Finding 3: ADRPO exhibits an emergent ability to intelligently navigate the exploration-
exploitation landscape, actively increasing exploration to escape local optima—a sophisticated
capability that emerges naturally from our advantage-guided mechanism (Figure 4).

Perhaps the most surprising property of ADRPO is its emergent ability to escape local optima through581

strategic exploration. As visualized in Figure 4, our LLM experiments with Qwen3 revealed that582

15



ADRPO implements a sophisticated optimization trajectory absent in fixed-regularization methods.583

While GRPO maintained high entropy throughout training but struggled to find high-reward regions584

(Figure 4, bottom left, red points), ADRPO exhibited a remarkable three-phase pattern: first exploring585

lower entropy regions, then actively increasing entropy to escape local optima, before finally converg-586

ing to a high-reward solution (Figure 4, bottom left, blue trajectory). This behavior—reminiscent587

of sophisticated simulated annealing schedules—emerged organically from our advantage-guided588

adaptive mechanism without explicit programming, resulting in final checkpoints with 5× higher589

reward than GRPO (Figure 4, bottom center). This finding suggests that advantage-guided regulariza-590

tion may unlock entirely new regions of policy space previously inaccessible to fixed-regularization591

methods.592

A.1 Limitations593

While ADRPO demonstrates significant improvements over existing approaches, several limitations594

should be acknowledged. Our experiments, though comprehensive, were primarily conducted on595

models of moderate scale (SD3 2B, Qwen2-0.5B, and Qwen3-0.6B) due to computational constraints.596

An important avenue for future work is extending these findings to much larger foundation models,597

where the exploration-exploitation dilemma becomes even more critical. Particularly, models with598

parameters in the hundreds of billions are known to be more susceptible to training collapse during599

online RL fine-tuning, potentially making adaptive regularization even more crucial at scale.600

The advantage-based formulation introduces a slight computational overhead compared to purely601

reward-weighted methods like ORW-CFM-W2 [13] and RAFT [8]. Though we mitigate this through602

efficient batch-based normalization techniques similar to those used in GRPO [31], further optimiza-603

tion could reduce this overhead. Our current implementation of advantage estimation using batch604

statistics works well in practice but could be improved with more sophisticated value approximation605

methods, especially for complex reward landscapes with high variance.606

A.2 Broader Impact607

In general, ADRPO represents a significant advance in reinforcement learning fine-tuning methodol-608

ogy with potential impacts extending beyond the specific models tested. The ability to efficiently609

navigate the exploration-exploitation trade-off through adaptive regularization addresses a fundamen-610

tal challenge in the field, potentially influencing how the broader research community approaches611

model alignment.612

Our finding that a relatively small model (2B parameters) can outperform substantially larger models613

(4.8B and 12B parameters) when fine-tuned with ADRPO has important implications for personal614

access to high-quality generative AI. This parameter efficiency could significantly reduce the compu-615

tational resources required for state-of-the-art performance, making advanced generative capabilities616

more accessible to researchers and organizations with limited resources while reducing the environ-617

mental footprint of both training and deploying such systems.618

The emergent ability to escape local optima demonstrated in our LLM experiments suggests that619

advantage-guided adaptive regularization may unlock previously unattainable regions of policy space.620

This capability could inspire new approaches to optimization in high-dimensional spaces where fixed621

regularization schemes tend to converge prematurely to a sub-optimal.622

Our work also introduces a unified framework that bridges continuous and discrete generative623

paradigms, offering a consistent solution to the exploration-exploitation dilemma across domains.624

This cross-domain applicability could foster greater knowledge transfer between previously disparate625

research communities working on different types of generative models.626
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B Experimental Details627

In this section, we provide comprehensive details of our experimental setup for both text-to-image628

alignment and language model fine-tuning tasks. To maintain clarity, we present these domains629

separately.630

B.1 Flow Matching Model Fine-tuning Tasks631

B.1.1 Baseline Methods632

Base Model We adopt Stable Diffusion 3 (SD3) [12] as our base model—a 2B parameter architec-633

ture that combines a Multimodal Diffusion Transformer (MMDiT) backbone with a rectified flow634

training objective. SD3 represents the latest evolution of latent diffusion models, introducing a joint635

text-image Transformer that enables rich bidirectional attention between prompt tokens and image636

latents. Unlike earlier score-based approaches, SD3 is trained via conditional flow matching under a637

rectified trajectory, where the model learns to predict direct velocity fields between noise and data,638

improving sample efficiency and semantic alignment. It leverages multiple frozen text encoders639

(CLIP and T5) and improved autoencoding for high-resolution image synthesis, while achieving640

state-of-the-art performance on prompt fidelity, compositional reasoning, and text rendering. This641

combination of high quality, controllability, and architectural flexibility makes SD3 a robust and642

representative base model for studying the effects of reinforcement learning fine-tuning, such as643

ADRPO.644

Larger-Scale Flow Matching Models To comprehensively evaluate ADRPO against parameter645

scaling approaches, we selected two state-of-the-art text-to-image diffusion models that leverage646

flow-matching training objectives and significantly larger parameter counts than our base model.647

These models serve as strong upper baselines in terms of both capacity and generation quality:648

1. FLUX.1-Dev [42], with 12B parameters, represents the high-performance frontier of open-649

source flow-matching architectures. It employs a rectified flow training objective based on650

Wasserstein-2 optimal transport, enabling more stable and efficient training compared to651

traditional score-matching methods. FLUX integrates a multimodal diffusion transformer652

(MMDiT) with powerful prompt conditioning mechanisms, achieving near-photorealistic653

output, superior compositional fidelity, and high stylistic diversity. It is widely regarded as654

one of the most capable open models in terms of prompt adherence, fine-grained semantic655

alignment, and artistic control.656

2. SANA-1.5 [38], with 4.8B parameters, serves as a strong intermediate-scale baseline. It657

introduces an efficient diffusion transformer architecture that combines linear attention658

mechanisms and a highly compressed autoencoder (32x downsampling), enabling high-659

resolution generation at lower computational cost. SANA adopts a decoder-style language660

model for text conditioning and achieves state-of-the-art results on the GenEval benchmark661

for prompt-image alignment. Despite its moderate size, SANA.1.5 offers a competitive662

trade-off between generation quality, efficiency, and controllability.663

Both models exemplify the benefits of scaling parameter count and architectural sophistication within664

the flow-matching paradigm. By comparing against them, we isolate the advantages of ADRPO in665

improving alignment and control without relying solely on larger models. This allows us to highlight666

ADRPO’s efficiency and generalization capabilities, especially when applied to smaller models such667

as our 2B-parameter SD3 baseline.668

RL Baseline Methods For fine-tuning method comparisons, we included approaches representing669

the most representative spectrum of current techniques:670

RAFT [8] implements a reward-ranked fine-tuning approach that selects high-quality outputs based671

on reward scores, providing a online RL baseline. This approach has demonstrated considerable effec-672

tiveness in improving generative models but lacks the adaptive divergence regularization mechanisms673

essential for preserving model capabilities during policy optimization.674

DPO [37] adapts the Direct Preference Optimization method to flow matching models, providing an675

established offline RL baseline. We apply diffusion-DPO to flow matching following methodologies676
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established in recent literature [7]. This approach offers stable optimization and effective diversity677

preservation through its implicit regularization properties, though it may be limited in its ability678

to explore the full policy space due to its offline nature. Given DPO’s widespread adoption and679

demonstrated success across various fine-tuning tasks, it serves as our primary offline RL fine-tuning680

baseline.681

ORW-CFM-W2 [13] represents the current state-of-the-art in online RL fine-tuning for flow matching682

models, employing fixed Wasserstein-2 regularization combined with reward weighting. As the first683

online RL fine-tuning method developed specifically for flow matching models, it achieves leading684

performance in this domain through its W2 regularized online RL framework. This method provides a685

crucial benchmark against which to evaluate our ADRPO approach, as it represents the online SOTA686

method with fixed Wasserstein-2 regularization, allowing us to directly highlight the effectiveness of687

our proposed adaptive divergence regularization mechanism.688

B.1.2 Reward Models and Evaluation689

For text-to-image generation, we implemented a comprehensive reward system combining multiple690

complementary models to evaluate different aspects of generation quality:691

1. Reward Model. We used CLIP Score [25] to compute cosine similarity between text692

prompts and generated images (ClipScore) as our reward model for all text-to-image align-693

ment task.694

2. Quality Assessment. We employed a aesthetic predictor to evaluate visual appeal from695

ImageReward [39].696

3. Human Preference Models. We incorporated ImageReward [39], trained on direct human697

judgments, and PickScore [19], developed through large-scale pick-one-from-four prefer-698

ence data, to align our generations with human aesthetic preferences. We complemented699

this with BLIP-based [11] evaluation to mitigate architecture-specific biases.700

4. Diversity Evaluation. For diversity evaluation, we developed ClipDiversity, which measures701

the average pairwise distance between CLIP embeddings of multiple generated images of702

current FM model.703

B.1.3 Prompt Datasets704

Our text-to-image experiments utilized a diverse collection of prompts selected to evaluate different705

capabilities. DrawBench [28] provided our primary test set, covering attribute binding, spatial706

relationships, counting accuracy, and text rendering. We extended this with artistic style prompts707

from RAFT [8] (e.g., "Van Gogh style astronaut") and custom compositional prompts testing multi-708

object relationships (e.g., "A green apple and a black backpack").709

B.2 LLM Fine-tuning Tasks710

B.2.1 Baseline Methods711

Base Models For our language model experiments, we employed Qwen2 [40] and Qwen3 [41]712

models as base architectures, representing recent advancements in autoregressive LLM models. These713

models demonstrate strong foundational capabilities and serve as robust pre-trained reference model714

for fine-tuning experiments. Specifically, Qwen2 and Qwen3 incorporate key architectural enhance-715

ments such as Grouped Query Attention (GQA), RoPE positional encoding, and long-context support716

(up to 128K for Qwen3), which contribute to efficient inference and robust context handling. More-717

over, despite their relatively small parameter sizes (0.5B and 0.6B respectively), these models exhibit718

competitive performance across a range of reasoning, code generation, and language understanding719

benchmarks. Their strong pretraining on diverse multilingual and domain-specific corpora—including720

high-quality instructional data, code, and math—ensures excellent generalization. Qwen3 further721

introduces a hybrid prompting paradigm that enables dynamic switching between direct answering722

and step-by-step reasoning, significantly enhancing the model’s flexibility and interpretability during723

instruction-following tasks. These strengths make Qwen2 and Qwen3 especially well-suited for724

fine-tuning via reinforcement learning from human feedback (RLHF), where high-quality priors and725

reasoning ability are essential for aligning model behavior with human preferences.726
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RL Baseline Methods For RL fine-tuning comparison, we selected GRPO [31] with fixed KL727

regularization (β = 0.04 [31]) as it represents the current state-of-the-art in online RL fine-tuning for728

LLMs. GRPO improves upon earlier methods like PPO [30] through group-level advantage estimation729

and more efficient policy optimization. However, it crucially still relies on static regularization that730

treats all samples equally regardless of their quality or uncertainty. This limitation makes GRPO an731

ideal candidate for demonstrating the advantages of our adaptive regularization approach, as both732

methods share the same underlying optimization framework but differ specifically in their treatment733

of regularization (also can be served as our ablation studies).734

B.2.2 Reward Model and Evaluation735

For LLM fine-tuning, we used RM-Gemma-2B [27, 8], a reward model built upon the Gemma-2B736

language model and fine-tuned using a diverse collection of human preference datasets. RM-Gemma-737

2B maps input completions to scalar reward values, which serve as proxy signals for alignment with738

human preferences. The model is trained using pairwise comparison data spanning a wide range739

of tasks—including helpfulness, harmlessness, factuality, and reasoning—through a Bradley-Terry740

style objective that encourages higher scores for preferred responses. This formulation enables the741

reward model to capture nuanced quality differences across candidate outputs. To support more stable742

and informed policy updates, we further incorporated entropy-based regularization to evaluate and743

balance the exploration-exploitation dynamics of the fine-tuned policies. This combined approach744

ensures that the optimization process not only aligns outputs with human values but also maintains745

diversity and adaptability in model behavior.746

B.2.3 Prompt Datasets747

For the large language model fine-tuning, we have used the RLHFlow/test_generation_2k dataset [9],748

containing 2,000 diverse prompts compiled from high-quality instruction-following datasets, and we749

randomly choose 10% as test prompts. This diverse prompt set allowed comprehensive evaluation750

across multiple dimensions, including factual accuracy, reasoning capabilities, and response quality.751

Specifically, the prompts were drawn from a combination of several representative and complementary752

sources: UltraFeedback [5], Capybara [6], UltraInteract [43], and OpenOrca [20].753

• UltraFeedback provides high-quality single-turn instruction-response pairs with rich feed-754

back annotations generated by GPT-4, including multi-dimensional numerical scores (e.g.,755

helpfulness, correctness, conciseness) and textual critiques. These annotations support756

fine-grained evaluation and reward modeling.757

• Capybara contributes multi-turn dialogues generated through the Amplify-Instruct pipeline,758

which enriches single-turn seed prompts into deep, logically consistent conversations. It759

emphasizes diverse topics, natural phrasing, and contextual reasoning, making it valuable760

for evaluating sustained dialogue coherence.761

• UltraInteract focuses on complex tasks involving step-by-step reasoning, such as math,762

coding, and logic problems. Each example includes multi-step trajectories with intermediate763

model outputs, environment feedback, and correctness signals, enabling assessment of764

models’ planning and iterative refinement abilities.765

• OpenOrca offers a large-scale collection of instruction-response pairs distilled from GPT-4766

and GPT-3.5 using the FLAN dataset collection. Its responses often include chain-of-thought767

style rationales, making it a useful benchmark for evaluating models’ reasoning depth and768

informativeness.769

By combining prompts from these datasets, the test set enables comprehensive evaluation of a model’s770

capabilities across a wide range of real-world tasks and dialogue scenarios, from single-turn factual771

queries to multi-turn, multi-step reasoning challenges.772

B.3 Computation Resources773

All experiments were conducted on NVIDIA A6000 (48GB) GPUs. For SD3 fine-tuning tasks [12],774

we employed parameter-efficient LoRA [17] adaptation to reduce memory requirements and training775

time, while still achieving excellent results. In contrast, for the relatively smaller Qwen2-0.5B [40]776
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and Qwen3-0.6B [41] language models, we performed direct full-parameter fine-tuning without777

LoRA.778

Our experimental setup utilized publicly available open-source reward/evaluation models and datasets779

across all domains, ensuring reproducibility and alignment with established benchmarks. The780

computation requirements varied significantly between tasks: LLM fine-tuning experiments were781

relatively efficient, typically completing within 12-24 hours per model configuration, while SD3782

fine-tuning tasks were more computationally intensive, requiring approximately 2-3 days.783
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C Algorithm Pseudocode784

We first detail our algorithm pseudocode in Algorithm 1 for fine-tuning flow matching models (we785

use linear interpolation path as an example). Noting that, we can sample from current learned786

velocity field vθ(xt, t, c) via solving: x1 = x0 +
∫ 1

0
vθ(xt, t, c)dt, wherein x0 ∼ p(x0) and p(x0) is787

a standard gaussian distribution [21, 12]. As for our method for fine-tuning LLM models, we can788

simply add an extra advantage-weighted KL divergence into the original GRPO training loss as Equ.789

(7), therefore it is easy to be implemented.790

Algorithm 1 Adaptive Divergence Regularized Policy Optimization (ADRPO) for SD3 Fine-tuning
Require: Pre-trained flow matching model πref (SD3), baseline regularization coefficient β0, advan-

tage clipping range [Amin, Amax], learning rate η
1: Initialize fine-tuned policy π0

θ with pre-trained parameters (or LoRA adaptation)
2: for training iteration n = 1, 2, . . . do
3: Sample a batch of text prompts {ci}Bi=1 ∼ p(c)
4: Sample target states {xi

1}Bi=1 ∼ πn−1
θ (x|ci) from current policy ▷ Online sampling strategy

5: for each prompt ci and its generated image xi
1 do

6: Compute reward R(xi
1, ci) using CLIP Score

7: Sample intermediate time step ti ∼ U(0, 1)
8: Compute intermediate state xi

t = (1− ti)x
i
0 + tix

i
1 ▷ Straight-line interpolation

9: Compute target velocity ui
t = xi

1 − xi
0

10: end for
11: Compute baseline value V (ci) =

1
B

∑B
i=1 R(xi

1, ci) for each context
12: Compute advantage A(xi

1, ci) = R(xi
1, ci)− V (ci)

13: Apply advantage clipping: Aclipped(x
i
1, ci) = clip(A(xi

1, ci), Amin, Amax)
14: Compute adaptive regularization coefficient βtot = β0 −Aclipped(x

i
1, ci)

15: Update model parameters using the ADRPO loss LADRPO-FM(θ) from Equation (6):
16: θ ← θ − η∇θLADRPO-FM(θ)
17: end for
18: return Fine-tuned policy πθ
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D Additional Experimental Results791

D.1 Flow Matching Model Fine-tuning Tasks792

D.1.1 Additional Qualitative Results793

SD3
(2B)

SD3+
ADRPO

(2B,Ours)

A black colored 
banana

A zebra to the right 
of a fire hydrant.

A storefront with it.
'Diffusion' written on 

SANA-1.5
(4.8B)

FLUX.1 
Dev
(12B)

A stack of 3 cubes. A 
red cube is on the top, 
sitting on a red cube. 
The red cube is in the 
middle, sitting on a 

green cube. The green 
cube is on the bottom.

Figure 5: Additional Qualitative Comparison with Large FM Generative Models. Our ADRPO
demonstrates superior performance in Attribute Binding, Coloring, Counting, Text Rendering and
Position.
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SD3

SD3+
RAFT

A green apple and a 
black backpack

A yellow book
and a red vase.

A storefront with 'Diffusion' 
written on it.

SD3+
ORW-

CFM-W2

SD3+
DPO

A banana on the 
left of an apple.

SD3+
ADRPO
(Ours)

Figure 6: Additional Qualitative Comparison with Other RL Fine-tuning Methods. Our ADRPO
demonstrates superior performance in Text Rendering, Attribute Binding, Coloring, Counting and
Position.
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D.1.2 Learning Curves794
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Figure 7: Learning Curves of Fine-tuning SD3. Left: Complete policy optimization trajectories across
three different methods throughout training using a same seed (for fairness). Transparency indicates
progression from early (transparent) stages through convergent (solid) to final (star) checkpoints,
with each point representing a learned policy from different iterations. Center and right: Learning
curves of RL agents.
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D.2 LLM Fine-tuning Tasks795

D.2.1 Learning Curves796
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Figure 8: Learning Curves of LLM Fine-tuning Experiments (100 iterations, no early stop).
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D.2.2 Reward and KL Divergence Trade-off797
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Figure 9: Reward Divergence Trade-off of LLM Fine-tuning Experiments (100 iterations, no early
stop).
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NeurIPS Paper Checklist798

1. Claims799

Question: Do the main claims made in the abstract and introduction accurately reflect the800

paper’s contributions and scope?801

Answer: [Yes]802

Justification: Our abstract and introduction clearly articulate the key contributions, specifi-803

cally: (1) introducing ADRPO as a general framework for adjusting regularization based804

on advantage estimates in Sec. 3, (2) demonstrating superior text-to-image alignment with805

ADRPO enabling a 2B parameter model to outperform larger models and other RL methods806

(See Fig. 1 and Fig. 2), (3) showing emergent exploration behavior in LLMs (See Fig. 4),807

and (4) establishing cross-domain applicability across flow matching models and LLMs.808

These claims are fully supported by the experimental results in Sec. 4 and additional results809

in App. D.810

Guidelines:811

• The answer NA means that the abstract and introduction do not include the claims812

made in the paper.813

• The abstract and/or introduction should clearly state the claims made, including the814

contributions made in the paper and important assumptions and limitations. A No or815

NA answer to this question will not be perceived well by the reviewers.816

• The claims made should match theoretical and experimental results, and reflect how817

much the results can be expected to generalize to other settings.818

• It is fine to include aspirational goals as motivation as long as it is clear that these goals819

are not attained by the paper.820

2. Limitations821

Question: Does the paper discuss the limitations of the work performed by the authors?822

Answer: [Yes]823

Justification: We include a detailed limitations section in App. A.1 that discusses com-824

putational overhead, scaling to larger models, and potential improvements to advantage825

estimation techniques. We acknowledge that our experiments were primarily conducted826

on models of moderate scale (SD3-2B [12], Qwen2-0.5B [40], and Qwen3-0.6B [41]) due827

to computational constraints and discuss how the approach might behave on much larger828

foundation models.829

Guidelines:830

• The answer NA means that the paper has no limitation while the answer No means that831

the paper has limitations, but those are not discussed in the paper.832

• The authors are encouraged to create a separate "Limitations" section in their paper.833

• The paper should point out any strong assumptions and how robust the results are to834

violations of these assumptions (e.g., independence assumptions, noiseless settings,835

model well-specification, asymptotic approximations only holding locally). The authors836

should reflect on how these assumptions might be violated in practice and what the837

implications would be.838

• The authors should reflect on the scope of the claims made, e.g., if the approach was839

only tested on a few datasets or with a few runs. In general, empirical results often840

depend on implicit assumptions, which should be articulated.841

• The authors should reflect on the factors that influence the performance of the approach.842

For example, a facial recognition algorithm may perform poorly when image resolution843

is low or images are taken in low lighting. Or a speech-to-text system might not be844

used reliably to provide closed captions for online lectures because it fails to handle845

technical jargon.846

• The authors should discuss the computational efficiency of the proposed algorithms847

and how they scale with dataset size.848

• If applicable, the authors should discuss possible limitations of their approach to849

address problems of privacy and fairness.850
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• While the authors might fear that complete honesty about limitations might be used by851

reviewers as grounds for rejection, a worse outcome might be that reviewers discover852

limitations that aren’t acknowledged in the paper. The authors should use their best853

judgment and recognize that individual actions in favor of transparency play an impor-854

tant role in developing norms that preserve the integrity of the community. Reviewers855

will be specifically instructed to not penalize honesty concerning limitations.856

3. Theory assumptions and proofs857

Question: For each theoretical result, does the paper provide the full set of assumptions and858

a complete (and correct) proof?859

Answer: [NA]860

Justification: Our paper focuses on an empirical approach to reinforcement learning fine-861

tuning rather than providing formal theoretical results or proofs. We present algorithm862

formulations (see Equs. (4), (6), and (7)) and empirical validations of the proposed ADRPO863

method through extensive experiments in Sec. 4.864

Guidelines:865

• The answer NA means that the paper does not include theoretical results.866

• All the theorems, formulas, and proofs in the paper should be numbered and cross-867

referenced.868

• All assumptions should be clearly stated or referenced in the statement of any theorems.869

• The proofs can either appear in the main paper or the supplemental material, but if870

they appear in the supplemental material, the authors are encouraged to provide a short871

proof sketch to provide intuition.872

• Inversely, any informal proof provided in the core of the paper should be complemented873

by formal proofs provided in appendix or supplemental material.874

• Theorems and Lemmas that the proof relies upon should be properly referenced.875

4. Experimental result reproducibility876

Question: Does the paper fully disclose all the information needed to reproduce the main ex-877

perimental results of the paper to the extent that it affects the main claims and/or conclusions878

of the paper (regardless of whether the code and data are provided or not)?879

Answer: [Yes]880

Justification: We provide comprehensive details on the experimental setup in Sec. 4.1 and881

App. B, including model architectures, datasets, reward models, and evaluation metrics. Our882

algorithm pseudocode in App. C (Algorithm 1) further enhances reproducibility by detailing883

the implementation of ADRPO for SD3 fine-tuning. We also discuss LLM/FM fine-tuning884

details in App. C and App. B.885

Guidelines:886

• The answer NA means that the paper does not include experiments.887

• If the paper includes experiments, a No answer to this question will not be perceived888

well by the reviewers: Making the paper reproducible is important, regardless of889

whether the code and data are provided or not.890

• If the contribution is a dataset and/or model, the authors should describe the steps taken891

to make their results reproducible or verifiable.892

• Depending on the contribution, reproducibility can be accomplished in various ways.893

For example, if the contribution is a novel architecture, describing the architecture fully894

might suffice, or if the contribution is a specific model and empirical evaluation, it may895

be necessary to either make it possible for others to replicate the model with the same896

dataset, or provide access to the model. In general. releasing code and data is often897

one good way to accomplish this, but reproducibility can also be provided via detailed898

instructions for how to replicate the results, access to a hosted model (e.g., in the case899

of a large language model), releasing of a model checkpoint, or other means that are900

appropriate to the research performed.901

• While NeurIPS does not require releasing code, the conference does require all submis-902

sions to provide some reasonable avenue for reproducibility, which may depend on the903

nature of the contribution. For example904

28



(a) If the contribution is primarily a new algorithm, the paper should make it clear how905

to reproduce that algorithm.906

(b) If the contribution is primarily a new model architecture, the paper should describe907

the architecture clearly and fully.908

(c) If the contribution is a new model (e.g., a large language model), then there should909

either be a way to access this model for reproducing the results or a way to reproduce910

the model (e.g., with an open-source dataset or instructions for how to construct911

the dataset).912

(d) We recognize that reproducibility may be tricky in some cases, in which case913

authors are welcome to describe the particular way they provide for reproducibility.914

In the case of closed-source models, it may be that access to the model is limited in915

some way (e.g., to registered users), but it should be possible for other researchers916

to have some path to reproducing or verifying the results.917

5. Open access to data and code918

Question: Does the paper provide open access to the data and code, with sufficient instruc-919

tions to faithfully reproduce the main experimental results, as described in supplemental920

material?921

Answer: [Yes]922

Justification: We use publicly available models (SD3 [12], Qwen2 [40], Qwen3 [41])923

and datasets (DrawBench [28], RLHFlow [8]) as noted in App. B. Our implementation924

details and algorithm pseudocode in App. C and App. B provide sufficient information for925

reproduction, and we plan to release our codes upon publication.926

Guidelines:927

• The answer NA means that paper does not include experiments requiring code.928

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/929

public/guides/CodeSubmissionPolicy) for more details.930

• While we encourage the release of code and data, we understand that this might not be931

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not932

including code, unless this is central to the contribution (e.g., for a new open-source933

benchmark).934

• The instructions should contain the exact command and environment needed to run to935

reproduce the results. See the NeurIPS code and data submission guidelines (https:936

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.937

• The authors should provide instructions on data access and preparation, including how938

to access the raw data, preprocessed data, intermediate data, and generated data, etc.939

• The authors should provide scripts to reproduce all experimental results for the new940

proposed method and baselines. If only a subset of experiments are reproducible, they941

should state which ones are omitted from the script and why.942

• At submission time, to preserve anonymity, the authors should release anonymized943

versions (if applicable).944

• Providing as much information as possible in supplemental material (appended to the945

paper) is recommended, but including URLs to data and code is permitted.946

6. Experimental setting/details947

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-948

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the949

results?950

Answer: [Yes]951

Justification: We specify training and test details in Section 4.1 and Appendix B, including952

prompt datasets (DrawBench for text-to-image, RLHFlow for LLMs), hyperparameters, and953

optimization approaches (LoRA adaptation for SD3, full parameter fine-tuning for Qwen).954

Guidelines:955

• The answer NA means that the paper does not include experiments.956

• The experimental setting should be presented in the core of the paper to a level of detail957

that is necessary to appreciate the results and make sense of them.958
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• The full details can be provided either with the code, in appendix, or as supplemental959

material.960

7. Experiment statistical significance961

Question: Does the paper report error bars suitably and correctly defined or other appropriate962

information about the statistical significance of the experiments?963

Answer: [Yes]964

Justification: Table 1 reports standard errors estimated over 3 runs with different random965

seeds for all evaluation metrics. This is clearly stated in the table caption ("We report966

standard errors estimated over 3 runs of different random seeds") and the results consistently967

show ADRPO outperforming other methods beyond statistical error margins.968

Guidelines:969

• The answer NA means that the paper does not include experiments.970

• The authors should answer "Yes" if the results are accompanied by error bars, confi-971

dence intervals, or statistical significance tests, at least for the experiments that support972

the main claims of the paper.973

• The factors of variability that the error bars are capturing should be clearly stated (for974

example, train/test split, initialization, random drawing of some parameter, or overall975

run with given experimental conditions).976

• The method for calculating the error bars should be explained (closed form formula,977

call to a library function, bootstrap, etc.)978

• The assumptions made should be given (e.g., Normally distributed errors).979

• It should be clear whether the error bar is the standard deviation or the standard error980

of the mean.981

• It is OK to report 1-sigma error bars, but one should state it. The authors should982

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis983

of Normality of errors is not verified.984

• For asymmetric distributions, the authors should be careful not to show in tables or985

figures symmetric error bars that would yield results that are out of range (e.g. negative986

error rates).987

• If error bars are reported in tables or plots, The authors should explain in the text how988

they were calculated and reference the corresponding figures or tables in the text.989

8. Experiments compute resources990

Question: For each experiment, does the paper provide sufficient information on the com-991

puter resources (type of compute workers, memory, time of execution) needed to reproduce992

the experiments?993

Answer: [Yes]994

Justification: In App. B, we specify that all experiments were conducted on NVIDIA A6000995

(48GB) GPUs, with LoRA [17] used for SD3 fine-tuning to reduce memory requirements.996

We also note the approximate time requirements: LLM experiments completed within 12-24997

hours per model configuration, while SD3 fine-tuning required 2-3 days.998

Guidelines:999

• The answer NA means that the paper does not include experiments.1000

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1001

or cloud provider, including relevant memory and storage.1002

• The paper should provide the amount of compute required for each of the individual1003

experimental runs as well as estimate the total compute.1004

• The paper should disclose whether the full research project required more compute1005

than the experiments reported in the paper (e.g., preliminary or failed experiments that1006

didn’t make it into the paper).1007

9. Code of ethics1008

Question: Does the research conducted in the paper conform, in every respect, with the1009

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1010
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Answer: [Yes]1011

Justification: Our research conforms to the NeurIPS Code of Ethics. We have ensured1012

transparency in our methodology, cited all sources appropriately in our bibliography, and1013

discussed both benefits and potential limitations of our approach in App. A and App. A.1.1014

Guidelines:1015

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1016

• If the authors answer No, they should explain the special circumstances that require a1017

deviation from the Code of Ethics.1018

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1019

eration due to laws or regulations in their jurisdiction).1020

10. Broader impacts1021

Question: Does the paper discuss both potential positive societal impacts and negative1022

societal impacts of the work performed?1023

Answer: [Yes]1024

Justification: In App. A.2, we discuss both positive impacts (parameter efficiency leading to1025

reduced computational resources and costs, making advanced generative capabilities more1026

accessible) and potential implications of our work. We highlight that "our finding that a1027

relatively small model (2B parameters) can outperform substantially larger models (4.8B1028

and 12B parameters) when fine-tuned with ADRPO has important implications for personal1029

access to high-quality generative AI."1030

Guidelines:1031

• The answer NA means that there is no societal impact of the work performed.1032

• If the authors answer NA or No, they should explain why their work has no societal1033

impact or why the paper does not address societal impact.1034

• Examples of negative societal impacts include potential malicious or unintended uses1035

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1036

(e.g., deployment of technologies that could make decisions that unfairly impact specific1037

groups), privacy considerations, and security considerations.1038

• The conference expects that many papers will be foundational research and not tied1039

to particular applications, let alone deployments. However, if there is a direct path to1040

any negative applications, the authors should point it out. For example, it is legitimate1041

to point out that an improvement in the quality of generative models could be used to1042

generate deepfakes for disinformation. On the other hand, it is not needed to point out1043

that a generic algorithm for optimizing neural networks could enable people to train1044

models that generate Deepfakes faster.1045

• The authors should consider possible harms that could arise when the technology is1046

being used as intended and functioning correctly, harms that could arise when the1047

technology is being used as intended but gives incorrect results, and harms following1048

from (intentional or unintentional) misuse of the technology.1049

• If there are negative societal impacts, the authors could also discuss possible mitigation1050

strategies (e.g., gated release of models, providing defenses in addition to attacks,1051

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1052

feedback over time, improving the efficiency and accessibility of ML).1053

11. Safeguards1054

Question: Does the paper describe safeguards that have been put in place for responsible1055

release of data or models that have a high risk for misuse (e.g., pretrained language models,1056

image generators, or scraped datasets)?1057

Answer: [NA]1058

Justification: Our paper doesn’t explicitly release models or datasets that pose high risk for1059

misuse. We focus on improving fine-tuning methodology for existing models (Sec. 3) rather1060

than releasing new assets that would require specific safeguards.1061

Guidelines:1062

• The answer NA means that the paper poses no such risks.1063
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• Released models that have a high risk for misuse or dual-use should be released with1064

necessary safeguards to allow for controlled use of the model, for example by requiring1065

that users adhere to usage guidelines or restrictions to access the model or implementing1066

safety filters.1067

• Datasets that have been scraped from the Internet could pose safety risks. The authors1068

should describe how they avoided releasing unsafe images.1069

• We recognize that providing effective safeguards is challenging, and many papers do1070

not require this, but we encourage authors to take this into account and make a best1071

faith effort.1072

12. Licenses for existing assets1073

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1074

the paper, properly credited and are the license and terms of use explicitly mentioned and1075

properly respected?1076

Answer: [Yes]1077

Justification: We properly cite the original sources for all models and datasets used, including1078

SD3 [12], Qwen2 [40], Qwen3 [41], DrawBench [28], SANA-1.5 [38], FLUX.1-Dev [42],1079

and RLHFlow [8] as referenced throughout our paper (see Sections 1, 2, 4, and App. B).1080

Guidelines:1081

• The answer NA means that the paper does not use existing assets.1082

• The authors should cite the original paper that produced the code package or dataset.1083

• The authors should state which version of the asset is used and, if possible, include a1084

URL.1085

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1086

• For scraped data from a particular source (e.g., website), the copyright and terms of1087

service of that source should be provided.1088

• If assets are released, the license, copyright information, and terms of use in the1089

package should be provided. For popular datasets, paperswithcode.com/datasets1090

has curated licenses for some datasets. Their licensing guide can help determine the1091

license of a dataset.1092

• For existing datasets that are re-packaged, both the original license and the license of1093

the derived asset (if it has changed) should be provided.1094

• If this information is not available online, the authors are encouraged to reach out to1095

the asset’s creators.1096

13. New assets1097

Question: Are new assets introduced in the paper well documented and is the documentation1098

provided alongside the assets?1099

Answer:[NA]1100

Justification: Our paper doesn’t introduce new datasets, code packages, or model releases; it1101

presents a new methodology (ADRPO) for fine-tuning existing models.1102

Guidelines:1103

• The answer NA means that the paper does not release new assets.1104

• Researchers should communicate the details of the dataset/code/model as part of their1105

submissions via structured templates. This includes details about training, license,1106

limitations, etc.1107

• The paper should discuss whether and how consent was obtained from people whose1108

asset is used.1109

• At submission time, remember to anonymize your assets (if applicable). You can either1110

create an anonymized URL or include an anonymized zip file.1111

14. Crowdsourcing and research with human subjects1112

Question: For crowdsourcing experiments and research with human subjects, does the paper1113

include the full text of instructions given to participants and screenshots, if applicable, as1114

well as details about compensation (if any)?1115
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Answer: [NA]1116

Justification: Our research doesn’t involve crowdsourcing or direct human subjects. We use1117

existing public datasets and evaluation metrics rather than collecting new human preference1118

data or conducting human evaluations.1119

Guidelines:1120

• The answer NA means that the paper does not involve crowdsourcing nor research with1121

human subjects.1122

• Including this information in the supplemental material is fine, but if the main contribu-1123

tion of the paper involves human subjects, then as much detail as possible should be1124

included in the main paper.1125

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1126

or other labor should be paid at least the minimum wage in the country of the data1127

collector.1128

15. Institutional review board (IRB) approvals or equivalent for research with human1129

subjects1130

Question: Does the paper describe potential risks incurred by study participants, whether1131

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1132

approvals (or an equivalent approval/review based on the requirements of your country or1133

institution) were obtained?1134

Answer: [NA]1135

Justification: Our paper doesn’t involve research with human subjects that would require1136

IRB approval or equivalent.1137

Guidelines:1138

• The answer NA means that the paper does not involve crowdsourcing nor research with1139

human subjects.1140

• Depending on the country in which research is conducted, IRB approval (or equivalent)1141

may be required for any human subjects research. If you obtained IRB approval, you1142

should clearly state this in the paper.1143

• We recognize that the procedures for this may vary significantly between institutions1144

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1145

guidelines for their institution.1146

• For initial submissions, do not include any information that would break anonymity (if1147

applicable), such as the institution conducting the review.1148

16. Declaration of LLM usage1149

Question: Does the paper describe the usage of LLMs if it is an important, original, or1150

non-standard component of the core methods in this research? Note that if the LLM is used1151

only for writing, editing, or formatting purposes and does not impact the core methodology,1152

scientific rigorousness, or originality of the research, declaration is not required.1153

Answer: [NA]1154

Justification: While we fine-tune LLMs (Qwen2, Qwen3), LLMs are not used as components1155

in our research methodology itself; they are the subject of study rather than tools used to1156

develop the core method.1157

Guidelines:1158

• The answer NA means that the core method development in this research does not1159

involve LLMs as any important, original, or non-standard components.1160

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1161

for what should or should not be described.1162
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